The Sorting Problem

Input: Array \(A \) of items with comparable keys.

Task: Sort the items in \(A \) by increasing keys.

The number of items to be sorted is usually denoted by \(n \).

What is important?

Worst-case running-time:
What are the bounds on \(T_{\text{Sort}}(n) \) for our Sorting Algorithm Sort.

In-place or not?:
A sorting algorithm is in-place if it can be (simply) implemented on the input array, with only \(O(1) \) extra space (extra variables).

Stable or not?:
A sorting algorithm is stable if for every pair of indices with \(A[i].\text{key} = A[j].\text{key} \) and \(i < j \), the entry \(A[i] \) comes before \(A[j] \) in the output array.

Insertion Sort

Algorithm \(\text{insertionSort}(A) \)

1. \(\text{for } j \leftarrow 1 \text{ to } A.\text{length} - 1 \text{ do} \)
2. \(\quad a \leftarrow A[j] \)
3. \(\quad i \leftarrow j - 1 \)
4. \(\quad \text{while } i \geq 0 \text{ and } A[i].\text{key} > a.\text{key} \text{ do} \)
5. \(\quad \qquad A[i + 1] \leftarrow A[i] \)
6. \(\quad \qquad i \leftarrow i - 1 \)
7. \(\quad A[i + 1] \leftarrow a \)

- Asymptotic worst-case running time: \(\Theta(n^2) \).
- The worst-case (which gives \(\Omega(n^2) \)) is \(\langle n, n-1, \ldots, 1 \rangle \).
- Both stable and in-place.
2nd sorting algorithm - **Merge Sort**

Merge Sort - recursive structure

Algorithm mergeSort(A, i, j)

1. if $i < j$ then
2. \[mid \leftarrow \left\lceil \frac{i+j}{2} \right\rceil \]
3. mergeSort(A, i, mid)
4. mergeSort($A, mid + 1, j$)
5. merge(A, i, mid, j)

Running Time:

\[T(n) = \begin{cases}
\Theta(1), & \text{for } n \leq 1; \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + T_{merge}(n) + \Theta(1), & \text{for } n \geq 2.
\end{cases} \]

How do we perform the merging?

Merge pseudocode

Algorithm merge(A, i, mid, j)

1. new array B of length $j - i + 1$
2. \[k \leftarrow i \]
3. \[\ell \leftarrow mid + 1 \]
4. \[m \leftarrow 0 \]
5. while $k \leq mid$ and $\ell \leq j$ do
6. if $A[k].key \leq A[\ell].key$ then
7. $B[m] \leftarrow A[k]$ \[k \leftarrow k + 1 \]
8. else
9. $B[m] \leftarrow A[\ell]$ \[\ell \leftarrow \ell + 1 \]
10. \[m \leftarrow m + 1 \]
11. end while
12. while $\ell \leq j$ do
13. $A[m+i] \leftarrow B[m]$ \[m \leftarrow m + 1 \]
14. \[\ell \leftarrow \ell + 1 \]
15. end while
16. \[k \leftarrow k + 1 \]
17. while $k \leq mid$ do
18. $B[m] \leftarrow A[k]$ \[m \leftarrow m + 1 \]
19. $k \leftarrow k + 1$ \[\ell \leftarrow \ell + 1 \]
20. end while
21. \[B[m] \leftarrow A[k] \]
22. \[m \leftarrow m + 1 \]
23. \[\ell \leftarrow \ell + 1 \]
24. \[k \leftarrow k + 1 \]
25. end while

Merging the two subarrays

New array B for output. $\Theta(j - i + 1)$ time (linear time) always (best and worst cases).
Question on mergeSort

What is the status of mergeSort in regard to stability and in-place sorting?

1. Both stable and in-place.
2. Stable but not in-place.
3. Not stable, but is in-place.

Answer: not in-place but it is stable.

If line 6 reads < instead of <=, we have sorting but NOT Stability.

Analysis of Mergesort

- **merge**
 \[T_{\text{merge}}(n) = \Theta(n) \]

- **mergeSort**

 \[T(n) = \begin{cases}
 \Theta(1), & \text{for } n \leq 1; \\
 T\left(\lfloor \frac{n}{2} \rfloor \right) + T\left(\lfloor \frac{n}{2} \rfloor \right) + T_{\text{merge}}(n) + \Theta(1), & \text{for } n \geq 2.
 \end{cases} \]

 \[= \begin{cases}
 \Theta(1), & \text{for } n \leq 1; \\
 T\left(\lfloor \frac{n}{2} \rfloor \right) + T\left(\lfloor \frac{n}{2} \rfloor \right) + \Theta(n), & \text{for } n \geq 2.
 \end{cases} \]

Solution to recurrence:

\[T(n) = \Theta(n \log n). \]

Solving the mergeSort recurrence

Write with constants \(c, d\):

\[T(n) = \begin{cases}
 c, & \text{for } n \leq 1; \\
 2T\left(\lfloor \frac{n}{2} \rfloor \right) + dn, & \text{for } n \geq 2.
 \end{cases} \]

Suppose \(n = 2^k \) for some \(k \). Then no floors/ceilings.

\[T(n) = \begin{cases}
 c, & \text{for } n = 1; \\
 2T\left(\frac{n}{2}\right) + dn, & \text{for } n \geq 2.
 \end{cases} \]

Can extend to \(n \) not a power of 2 (see notes).
Merge Sort vs. Insertion Sort

- Merge Sort is much more efficient but:
 - If the array is “almost” sorted, Insertion Sort only needs “almost” linear time, while Merge Sort needs time $\Theta(n \lg(n))$ even in the best case.
 - For very small arrays, Insertion Sort is better because Merge Sort has overhead from the recursive calls.
 - Insertion Sort sorts in place, mergeSort does not (needs $\Omega(n)$ additional memory cells).

Divide-and-Conquer Algorithms

- Divide the input instance into several instances P_1, P_2, \ldots, P_a of the same problem of smaller size - “setting-up”.
- Recursively solve the problem on these smaller instances.
- Solve small enough instances directly.
- Combine the solutions for the smaller instances P_1, P_2, \ldots, P_a to a solution for the original instance. Do some “extra work” for this.

Analysing Divide-and-Conquer Algorithms

Analysis of divide-and-conquer algorithms yields recurrences like this:

$$T(n) = \begin{cases}
\Theta(1), & \text{if } n < n_0; \\
T(n_1) + \ldots + T(n_a) + f(n), & \text{if } n \geq n_0.
\end{cases}$$

$f(n)$ is the time for “setting-up” and “extra work.”

Usually recurrences can be simplified:

$$T(n) = \begin{cases}
\Theta(1), & \text{if } n < n_0; \\
aT(n/b) + \Theta(n^k), & \text{if } n \geq n_0,
\end{cases}$$

where $n_0, a, k \in \mathbb{N}$, $b \in \mathbb{R}$ with $n_0 > 0$, $a > 0$ and $b > 1$ are constants.

(The Master Theorem)

Theorem: Let $n_0 \in \mathbb{N}$, $k \in \mathbb{N}_0$ and $a, b \in \mathbb{R}$ with $a > 0$ and $b > 1$, and let $T : \mathbb{N} \to \mathbb{R}$ satisfy the following recurrence:

$$T(n) = \begin{cases}
\Theta(1), & \text{if } n < n_0; \\
aT(n/b) + \Theta(n^k), & \text{if } n \geq n_0.
\end{cases}$$

Let $e = \log_b(a)$; we call e the critical exponent. Then

$$T(n) = \begin{cases}
\Theta(n^e), & \text{if } k < e \quad (\text{I}); \\
\Theta(n^e \lg(n)), & \text{if } k = e \quad (\text{II}); \\
\Theta(n^k), & \text{if } k > e \quad (\text{III}).
\end{cases}$$

Theorem still true if we replace $aT(n/b)$ by

$$a_1T(\lfloor n/b \rfloor) + a_2T(\lceil n/b \rceil)$$

for $a_1, a_2 \geq 0$ with $a_1 + a_2 = a$.
Master Theorem in use

Example 1:
We can “read off” the recurrence for mergeSort:

\[
T_{\text{mergeSort}}(n) = \begin{cases}
\Theta(1), & n \leq 1; \\
T_{\text{mergeSort}}(\lceil \frac{n}{2} \rceil) + T_{\text{mergeSort}}(\lfloor \frac{n}{2} \rfloor) + \Theta(n), & n \geq 2.
\end{cases}
\]

In Master Theorem terms, we have

\[
n_0 = 2, \quad k = 1, \quad a = 2, \quad b = 2.
\]

Thus

\[
e = \log_b(a) = \log_2(2) = 1.
\]

Hence

\[T_{\text{mergeSort}}(n) = \Theta(n \log(n))\]

by case (II).

Further Reading

- If you have [GT], the “Sorting Sets and Selection” chapter
 has a section on mergeSort().

- If you have [CLRS], there is an entire chapter on recurrences.

... Master Theorem

Example 2: Let \(T \) be a function satisfying

\[
T(n) = \begin{cases}
\Theta(1), & \text{if } n \leq 1; \\
7T(n/2) + \Theta(n^4), & \text{if } n \geq 2.
\end{cases}
\]

Thus

\[
e = \log_b(a) = \log_7(7) < 3
\]

So \(T(n) = \Theta(n^4) \) by case (III) .