Dictionaries

A Dictionary stores key–element pairs, called items. Several elements might have the same key. Provides three methods:

- findElement(k): If the dictionary contains an item with key k, then return its element; otherwise return the special element NO_SUCH_KEY.
- insertItem(k, e): Insert an item with key k and element e.
- removeItem(k): If the dictionary contains an item with key k, then delete it and return its element; otherwise return NO_SUCH_KEY.

Assumption: we have a total order on keys (always the case in applications).

Note: We are concerned entirely with fast access and storage so focus on keys.

Binary Search Trees

Abstract definition: A binary tree is either empty or has a root vertex with a left and a right child each of which is a tree.

- Recursive datatype definition.

So every vertex v, either:

(i) has two children (v is an internal vertex), or
(ii) has no children (v is a leaf).

An internal vertex v has a left child and a right child which might be another internal vertex or a leaf.

A near leaf is an internal vertex with one or both children being leaves.

Definition

A tree storing (key, element) pairs is a Binary Search Tree if for every internal vertex v, the key k of v is:

- greater than or equal to every key in v’s left subtree, and
- less than or equal to every key in v’s right subtree.

List implementation:

\(\Theta(1) \) time for insertItem(k, e) but \(\Theta(n) \) for findElement(k) and removeItem(k).

HashTable implementation (with Bucket Arrays):

Good average-case performance for \(n = \Omega(N) \).

Worst-case running time: is insertItem(k, e) \(\Theta(1) \), findElement(k) and removeItem(k) are both \(\Theta(n) \).

Binary Search Tree implem. (without Balancing):

Good in the average-case—about \(\Theta(\lg n) \) for all operations.

Worst-case running time: \(\Theta(n) \) for all operations.

Balanced Binary search trees:

Worst-case is \(\Theta(\lg n) \) for all operations.
Key parameter for runtimes: *height*

- Given any vertex v of a tree T and a leaf there is a unique path from the vertex to the leaf:
 - length of path defined as number of internal vertices.
- The *height* of a vertex is the maximum length over all paths from it to leaves.
- The height of a tree is the height of the root.
- Note that if v has left child l and right child r then
 \[
 \text{height}(v) = 1 + \max\{\text{height}(l), \text{height}(r)\}.
 \]
- If we insert v_r along the path v_1, v_2, \ldots, v_r then only the heights of v_1, v_2, \ldots, v_r *might* be affected, all other vertices keep their previous height.

Binary Search Trees for Dictionary

Leaves are kept empty.

Algorithm findElement(k)

1. if isEmpty(T) then return NO_SUCH_KEY
2. else
3. \hspace{1em} $u \leftarrow$ root
4. \hspace{1em} while ((u is not null) and $u.key \neq k$) do
5. \hspace{2em} if ($k < u.key$) then $u \leftarrow u.left$
6. \hspace{2em} else $u \leftarrow u.right$
7. \hspace{1em} od
8. \hspace{1em} if (u is not null) and $u.key = k$ then return $u.elt$
9. \hspace{1em} else return NO_SUCH_KEY

findElement runs in $O(h)$ time, where h is height.

Algorithm insertItemBST(k, e)

1. Perform findElement(k) to find the “right” place for an item with key k (if it finds k high in the tree, walk down to the “near-leaf” with largest key no greater than k).
2. Neighbouring leaf vertex u becomes internal vertex, $u.key \leftarrow k$, $u.elt \leftarrow e$.

Binary Search Trees

<table>
<thead>
<tr>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>67</td>
</tr>
<tr>
<td>43</td>
</tr>
</tbody>
</table>
Algorithm `removeItemBST(k)`
1. Perform `findElement(k)` on the tree to get to vertex t.
2. If we find t with $t.key = k$,
3. then remove the item at t, set $e = t.elt$.
4. Let u be “near-leaf” closest to k. Move u’s item up to t.
5. else return `NO_SUCH_KEY`

1. A vertex of a tree is balanced if the heights of its children differ by at most 1.
2. An AVL tree is a binary search tree in which all vertices are balanced.

Worst-case running time

Theorem: For the binary search tree implementation of Dictionary, all methods (`findElement`, `insertItemBST`, `removeItemBST`) have asymptotic worst-case running time $\Theta(h)$, where h is the height of the tree. (can be $\Theta(n)$).
An AVL tree

The height of AVL trees

Theorem: The height of an AVL tree storing \(n \) items is \(O(\log(n)) \).

Corollary: The running time of the binary search tree methods `findElement`, `insertItem`, `removeItem` is \(O(\log(n)) \) on an AVL tree.

Let \(n(h) \) denote minimum number of items stored in an AVL tree of height \(h \). So \(n(1) = 1, n(2) = 2, n(3) = 4 \).

Claim: \(n(h) > 2^{h/2} - 1 \).

\[
\begin{align*}
n(h) & \geq 1 + n(h-1) + n(h-2) \\
& > 1 + 2^{\frac{h-1}{2}} - 1 + 2^{\frac{h-2}{2}} - 1 \\
& = (2^{\frac{1}{2}} + 2^{\frac{1}{2}})2^{\frac{h}{2}} - 1 \\
& > 2^{\frac{h}{2}} - 1.
\end{align*}
\]

Problem: After we apply `insertItem` or `removeItem` to an AVL tree, the resulting tree might no longer be an AVL tree.

Example

```
AVL tree. INSERT 60
```

Example (cont’d)

```
not AVL now . . .
```
We can rotate . . .

Now is AVL tree. INSERT 44

Restructuring

- z unbalanced vertex of minimal height
- y child of z of larger height
- x child of y of larger height (exists because 1 ins/del unbalanced the tree).
- V, W subtrees rooted at children of x
- X subtree rooted at sibling of x
- Y subtree rooted at sibling of y

Then

- $\text{height}(V) - 1 \leq \text{height}(W) \leq \text{height}(V) + 1$
- $\max\{\text{height}(V), \text{height}(W)\} = \text{height}(X)$
- $\max\{\text{height}(V), \text{height}(W)\} = \text{height}(Y)$.
A clockwise single rotation

A clockwise anti-clockwise double rotation

An anti-clockwise single rotation

An anti-clockwise clockwise double rotation

A clockwise anti-clockwise double rotation
Rotations

After an InsertItem():
We can always rebalance using just one single rotation or one double rotation (only 2x2 cases in total).

single rotation:
We make \(y\) the new root (of rebalancing subtree), \(z\) moves down, and the \(X\) subtree crosses to become 2nd child of \(z\) (with \(X\) as sibling).

double rotation:
We make \(x\) the new root, \(y\) and \(z\) become its children, and the two subtrees of \(x\) get split between each side.

\(\Theta(1)\) time for a single or double rotation.

Example (cont’d)

AVL tree. REMOVE 10.

Example (cont’d)

Not AVL tree . . . We rotate
Rotations

After a removeItem():
We may need to re-balance “up the tree”.
This requires $O(\log n)$ rotations at most, each takes $O(1)$ time.

The removal algorithm

Algorithm removeItem(k)
1. Remove item (k, e) with key k from tree using removeItemBST.
 Let u be leaf replacing removed vertex.
2. while u is not the root do
3. let z be the parent of u
4. if z is unbalanced then
5. do the appropriate rotation at z
6. let u be the parent of u
7. return e
Question on heights of AVL trees

- By definition of an AVL tree, for every internal vertex v, the difference between the height of the left child of v and the right child of v is at most 1.
- How large a difference can there be in the heights of any two vertices at the same "level" of an AVL tree?
 - 1.
 - 2.
 - At most $\log(n)$.
 - Up to n.

Answer: At most $\log(n)$.

Example of “globally-less-balanced” AVL tree

For this example, $n = 33$, $\log(n) > 5$.

Ordered Dictionaries

The `OrderedDictionary` ADT is an extension of the `Dictionary` ADT that supports the following additional methods:
- `closestKeyBefore(k)`: Return the key of the item with the largest key less than or equal to k.
- `closestElemBefore(k)`: Return the element of the item with the largest key less than or equal to k.
- `closestKeyAfter(k)`: Return the key of the item with the smallest key greater than or equal to k.
- `closestElemAfter(k)`: Return the element of the item with the smallest key greater than or equal to k.

Range Queries

`findAllItemsBetween(k_1, k_2)`: Return a list of all items whose key is between k_1 and k_2.
Binary Search Trees support Ordered Dictionaries AND Range Queries well.
Reading and Resources

If you have [GT]:
The Chapter on “Binary Search Trees” has a nice treatment of AVL trees. The chapter on “Trees” has details of tree traversal etc.

If you have [CLRS]:
The balanced trees are Red-Black trees, a bit different from AVL trees.