Dictionaries

A *Dictionary* stores key–element pairs, called *items*. Several elements might have the same key. Provides three methods:

- `findElement(k)`: If the dictionary contains an item with key `k`, then return its element; otherwise return the special element `NO_SUCH_KEY`.
- `insertItem(k, e)`: Insert an item with key `k` and element `e`.
- `removeItem(k)`: If the dictionary contains an item with key `k`, then delete it and return its element; otherwise return `NO_SUCH_KEY`.

List Dictionaries

- Items are stored in a *singly linked list* (in any order).
- Algorithms for all methods are straightforward.
- Running Time:

 \[
 \begin{align*}
 \text{insertItem} & : \Theta(1) \\
 \text{findElement} & : \Theta(n) \\
 \text{removeItem} & : \Theta(n)
 \end{align*}
 \]

 (n always denotes the number of items stored in the dictionary)

Direct Addressing

Suppose:

- Keys are integers in the range \(0, \ldots, N - 1\).
- All elements have *distinct keys*.

A data structure realising *Dictionary* (sometimes called a *direct address table)*:

- Elements are stored in array \(B\) of length \(N\).
- The element with key \(k\) is stored in \(B[k]\).
- Running Time: \(\Theta(1)\) for all methods.
Bucket Arrays

Suppose:
- Keys are integers in the range 0, \ldots, N − 1.
- Several elements might have the same key, so collisions may occur.

What do we do about these collisions?
Store them all together in a List pointed to by \(B[k] \) (sometimes called chaining).

Hash Tables

Dictionary implementation for arbitrary keys (not necessarily all distinct).

Two components:
- Hash function \(h \) mapping keys to integers in the range \(0, \ldots, N − 1 \) (for some suitable \(N \in \mathbb{N} \)).
- Bucket array \(B \) of length \(N \) to hold the items.

Item (key–element pair) with key \(k \) is stored in the bucket \(B[h(k)] \).

Bucket Arrays

Bucket array implementation of *Dictionary*:
- Bucket array \(B \) of length \(N \) holding Lists.
- Element with key \(k \) is stored in the List \(B[k] \).
- Methods of *Dictionary* are implemented using insertFirst(), first(), and remove(p) of List.

Running Time: \(\Theta(1) \) for all methods (with linked list implementation of List - \(p \) is always the first pointer, so we can easily keep track of it).
- Works because findElement(\(k \)) and removeItem(\(k \)) only need 1 item with key \(k \).
A good solution if \(N \) is not much larger than the number of keys (a small constant multiple).

Issues for Hash Tables

- Need to consider collision handling. (Here we might have \(h(k_1) = h(k_2) \) even for \(k_1 \neq k_2 \), so List implementation is more complicated.
- Analyse the running time.
- Find good hash functions.
- Choose appropriate \(N \).
Implementation

Problem: Elements with distinct keys might go into the same bucket.

Solution: Let buckets be *list dictionaries* storing the items (key-element pairs).

The methods:

Algorithm `findElement(k)`
1. Compute `h(k)`
2. `return B[h(k)].findElement(k)`

Algorithm `InsertItem(k, e)`
1. Compute `h(k)`
2. `B[h(k)].insertItem(k, e)`

Algorithm `removeItem(k)`
1. Compute `h(k)`
2. `return B[h(k)].removeItem(k)`

Implementation

Running time?
Depends on the list methods
- `B[h(k)].findElement(k),`
- `B[h(k)].insertItem(k, e),` and
- `B[h(k)].removeItem(k).`

Assume we Insert at front (or end):
- `Θ(1)` time for `B[h(k)].insertItem(k, e).`

Analysis

- Let `T_h` be the running time required for computing `h` (more precisely: `T_h(\text{n_key})`, where `n_key` is the size of the key)
- Let `m` be the maximum size of a bucket. Then the running time of the hash table methods is:
 - `insertItem : T_h + Θ(1)`
 - `findElement : T_h + Θ(m)`
 - `removeItem : T_h + Θ(m)`

Worst case:

- `m = n.`

- `m` depends on hash function and on input distribution of keys.
Hash functions

Hash function h maps keys to $\{0, \ldots, N-1\}$.

Criteria for a good hash function:

(H1) h evenly distributes the keys over the range of buckets (hope input keys are well distributed originally).

(H2) h is easy to compute.

Hash Codes

- Keys (of any type) are just sequences of bits in memory.
- Basic idea: Convert bit representation of key to a binary integer, giving the hash code of the key.
- But computer integers have bounded length (say 32 bits).
 - consider bit representation of key as sequence of 32-bit integers a_0, \ldots, a_{l-1}
 - Summation method: Hash code is
 \[a_0 + \cdots + a_{l-1} \mod N \]
- Polynomial method: Hash code is
 \[a_0 + a_1 \cdot x + a_2 \cdot x^2 + \cdots + a_{l-1} \cdot x^{l-1} \mod N \]
 (for some integer x).
 Sometimes $N = 2^{32}$.

Evaluating Polynomials

Horner’s Rule:

\[
\begin{align*}
& a_0 + a_1 \cdot x + a_2 \cdot x^2 + \cdots + a_{l-1} \cdot x^{l-1} \\
& = a_0 + a_1 \cdot x + a_2 \cdot x \cdot x + \cdots + a_{l-1} \cdot x \cdot x \cdots x \\
& = a_0 + x(a_1 + x(a_2 + \cdots + x(a_{l-2} + x(a_{l-1})\cdots))) \\
& \quad \text{[Θ(l^2) operations]} \\
\end{align*}
\]

Has been proved to be best possible.

Note: Sensible to reduce mod N after each operation.

Warning: Deciding what is a “good hash function” is something of a “black art”.

Polynomials look good because it is harder to see regularities (many keys mapping to the same hash value).

Warning: we haven’t proved anything! For some situations there are bad regularities, usually due to a bad choice of N.

Simpler if we start with keys that are already integers.

Trickier if the original key is not Integer type (eg string).

One approach: Split hash function into:

- hash code and
- compression map.

Arbitrary Objects \quad hash code \quad Integers \quad compression map \quad \{0,\ldots,N-1\}
Hash functions for character strings

Characters are 7-bit numbers (0, ..., 127).

- $x = 128, N = 96$. Bad for small words. (because $\text{gcd}(96, 128) = 32$. NOT coprime)
- $x = 128, N = 97$, good.
- $x = 127, N = 96$, good.

Compression Map

Integer k is mapped to

$$|ak + b| \mod N,$$

where a, b are randomly chosen integers.

Whole point of hashing is to “Compress” (evenly).

Works particularly well if a, N are coprime (experimental observation only).

Quick quiz question

Consider the hash function

$$h(k) = 3k \mod 9.$$

Suppose we use h to hash exactly one item for every key $k = 0, \ldots, 9M - 1$ (for some big M) into a bucket array with 9 buckets $B[0], B[1], \ldots, B[8]$. How many items end up in bucket $B[5]$?

1. 0.
2. M.
3. $2M$.
4. $4M$.

Answer is 0.

Load Factors and Re-hashing

- Number of items: n
- Length of bucket array: N

Load factor: $\frac{n}{N}$

- High load factor (definitely) causes many collisions (large buckets).
 - Low load factor - waste of memory space.
 - Good compromise: Load factor around $3/4$.
- Choose N to be a prime number around $(4/3)n$.
- If load factor gets too high or too low, re-hash (amortised analysis similar to dynamic arrays).
JVC and HashMap

- No duplicate keys.
- will hash many different types of key.
- User can specify - initial capacity (def. N=16), load factor (def. 3/4).
- *Dynamic* Hash table - "re-hash" takes place frequently behind scenes.
- Different hash functions for different key domains. For String, uses polynomial hash code with \(a = 31 \).
- Hashtable is more-or-less identical.

Reading and Resources

- If you have [GT]: The “Maps and Dictionaries” chapter.
- If you have [CLRS]: The “Hash tables” chapter.
- Two nice exercises on Lecture Note 4 (handed out).