Abstract Data Types (ADTs)

The “Specification Language” for Data Structures. An ADT consists of:
- a mathematical model of the data;
- methods for accessing and modifying the data.

An ADT does not specify:
- How the data should be organised in memory (though the ADT may suggest to us a particular structure).
- Which algorithms should be used to implement the methods.

An ADT is what, not how.

Data Structures

A data structure realising an ADT consists of:
- collections of variables for storing the data;
- algorithms for the methods of the ADT.

In terms of JAVA:

\[
\text{ADT} \leftrightarrow \text{JAVA interface} \\
\text{data structure} \leftrightarrow \text{JAVA class}
\]

The data structure (with algorithms) has a large influence on the algorithmic efficiency of the implementation.

Stacks

A Stack is an ADT with the following methods:
- push(e): Insert element e.
- pop(): Remove the most recently inserted element and return it;
 - an error occurs if the stack is empty.
- isEmpty(): Returns TRUE if the stack is empty, FALSE otherwise.
- Last-In First-Out (LIFO).

Can implement Stack with worst-case time $O(1)$ for all methods, with either an array or a linked list.

The reason we do so well? . . . Very simple operations.
Applications of Stacks

- Executing Recursive programs.
- Depth-First Search on a graph (coming later).
- Evaluating (postfix) Arithmetic expressions.

Algorithm postfixEval(s_1 \ldots s_k)
1. for i ← 1 to k do
2. if (s_i is a number) then push(s_i)
3. else (s, must be a (binary) operator)
4. e2 ← pop();
5. e1 ← pop();
6. a ← e1 s_i e2;
7. push(a)
8. return pop()

Example: 6 4 - 3 * 10 + 11 13 - *

Queues

A Queue is an ADT with the following methods:
- enqueue(e): Insert element e.
- dequeue(): Remove the element inserted the longest time ago and return it;
 - an error occurs if the queue is empty.
- isEmpty(): Return TRUE if the queue is empty and FALSE otherwise.
- First-In First-Out (FIFO).

Queue can easily be realised by a data structures based either on arrays or on linked lists.
Again, all methods run in \(O(1)\) time (simplicity).

Sequential Data

Mathematical model of the data: a linear sequence of elements.
- A sequence has well-defined first and last elements.
- Every element of a sequence except the last has a unique successor.
- Every element of a sequence except the first has a unique predecessor.
- The rank of an element \(e\) in a sequence \(S\) is the number of elements before \(e\) in \(S\).

Stacks and Queues are sequential.

Arrays and Linked Lists abstractly

An array, a singly linked list, and a doubly linked list storing objects \(o_1, o_2, o_3, o_4, o_5\):
Arrays and Linked Lists in Memory

An array, a singly linked list, and a doubly linked list storing objects o_1, o_2, o_3, o_4, o_5:

Vectors

A Vector is an ADT for storing a sequence S of n elements that supports the following methods:

- $\text{elemAtRank}(r)$: Return the element of rank r; an error occurs if $r < 0$ or $r > n - 1$.
- $\text{replaceAtRank}(r, e)$: Replace the element of rank r with e; an error occurs if $r < 0$ or $r > n - 1$.
- $\text{insertAtRank}(r, e)$: Insert a new element e at rank r (this increases the rank of all following elements by 1); an error occurs if $r < 0$ or $r > n$.
- $\text{removeAtRank}(r)$: Remove the element of rank r (this reduces the rank of all following elements by 1); an error occurs if $r < 0$ or $r > n - 1$.
- $\text{size}()$: Return n, the number of elements in the sequence.

Array Based Data Structure for Vector

Variables

- Array A (storing the elements)
- Integer n = number of elements in the sequence

Methods

```
Algorithm elemAtRank(r)
1. return $A[r]$
```

```
Algorithm replaceAtRank(r, e)
1. $A[r] \leftarrow e$
```

```
Algorithm insertAtRank(r, e)
1. for $i \leftarrow n$ downto $r + 1$ do
2. $A[i] \leftarrow A[i - 1]$
3. $A[r] \leftarrow e$
4. $n \leftarrow n + 1$
```

insertAtRank assumes the array is big enough! See later . . .
Array Based Data Structure for Vector

Algorithm removeAtRank(r)
1. for $i \leftarrow r$ to $n - 2$ do
2. \hspace{1em} $A[i] \leftarrow A[i + 1]$
3. \hspace{1em} $n \leftarrow n - 1$

Algorithm size()
1. return n

Running times (for Array based implementation)
- $\Theta(1)$ for elemAtRank, replaceAtRank, size
- $\Theta(n)$ for insertAtRank, removeAtRank (worst-case)

Realising List with Doubly Linked Lists

Variables
- Positions of a List are realised by nodes having fields `element`, `previous`, `next`.
- List is accessed through node-variables `first` and `last`.

Method (example)

Algorithm insertAfter(p, e)
1. create a new node q
2. $q\.element \leftarrow e$
3. $q\.next \leftarrow p\.next$
4. $q\.previous \leftarrow p$
5. $p\.next \leftarrow q$
6. $q\.next\.previous \leftarrow q$

Abstract Lists

List is a sequential ADT with the following methods:
- `element(p)`: Return the element at position p.
- `first()`: Return position of the first element; error if empty.
- `isEmtpy()`: Return `TRUE` if the list is empty, `FALSE` otherwise.
- `next(p)`: Return the position of the element following the one at position p; an error occurs if p is the last position.
- `isLast(p)`: Return `TRUE` if p is last in list, `FALSE` otherwise.
- `replace(p, e)`: Replace the element at position p with e.
- `insertFirst(e)`: Insert e as the first element of the list.
- `insertAfter(p, e)`: Insert element e after position p.
- `remove(p)`: Remove the element at position p.

Plus: `last()`, `previous(p)`, `isFirst(p)`, `insertLast(e)`, and `insertBefore(p, e)`

Realising List using Doubly Linked Lists

Method (example)

Algorithm remove(p)
1. $p\.previous\.next \leftarrow p\.next$
2. $p\.next\.previous \leftarrow p\.previous$
3. delete p

Running Times (for Doubly Linked implementation). All operations take $\Theta(1)$ time ...

ONLY BECAUSE of pointer representation (p is a direct link)

$O(1)$ bounds partly because we have simple methods. `search` would be inefficient in this implementation of List.
Dynamic Arrays

What if we try to insert too many elements into a fixed-size array?

The solution is a Dynamic Array.

Here we implement a dynamic VeryBasicSequence (essentially a queue with no dequeue()).

Dynamic Insertion

Algorithm insertLast(e)
1. if $n < A.length$ then
3. else $\triangleright n = A.length$, i.e., the array is full
4. $N ← 2(A.length + 1)$
5. Create new array A' of length N
6. for $i = 0$ to $n−1$ do
8. $A'[n] ← e$
9. $A ← A'$
10. $n ← n + 1$

VeryBasicSequence

VeryBasicSequence is an ADT for sequences with the following methods:

- elemAtRank(r): Return the element of S with rank r; an error occurs if $r < 0$ or $r > n−1$.
- replaceAtRank(r, e): Replace the element of rank r with e; an error occurs if $r < 0$ or $r > n−1$.
- insertLast(e): Append element e to the sequence.
- size(): Return n, the number of elements in the sequence.

Analysis of running-time

Worst-case analysis

elemAtRank, replaceAtRank, and size have $\Theta(1)$ running-time. insertLast has $\Theta(n)$ worst-case running time for an array of length n (instead of $\Theta(1)$)

In **Amortised analysis** we consider the total running time of a sequence of operations.

Theorem

Inserting m *elements into an initially empty VeryBasicSequence using the method insertLast takes* $\Theta(m)$ *time.*
Amortised Analysis

- m insertions $I(1), \ldots, I(m)$. Most are cheap (cost: $\Theta(1)$), some are expensive (cost: $\Theta(j)$).
- Expensive insertions: $I(i_1), \ldots, I(i_k)$, $1 \leq i_1 < \ldots < i_k \leq m$.

 \[
 i_1 = 1, i_2 = 3, i_3 = 7, \ldots, i_{j+1} = 2^j + 1, \ldots \\
 \Rightarrow 2^{r-1} \leq i_r < 2^r \\
 \Rightarrow \ell \leq \lg(m) + 1.
 \]

\[
\sum_{j=1}^{\ell} O(i_j) + \sum_{1 \leq r \leq m: i \neq i_1, \ldots, i_k} O(1) \leq O\left(\sum_{j=1}^{\ell} i_j \right) + O(m)
\]

\[
\leq O\left(\sum_{j=1}^{\ell} 2^j \right) + O(m)
\]

\[
= O\left(2^{\lg(m) + 2} - 2 \right) + O(m)
\]

\[
= O(4m - 2) + O(m)
\]

\[
= O(m).
\]

Reading

- Java Collections Framework: Stack, Queue, Vector. (Also, Java’s ArrayList behaves like a dynamic array).
- Lecture notes 3 (handed out).
- If you have [GT]: Chapters on “Stacks, Queues and Recursion” and “Vectors, Lists and Sequences”.
- If you have [CLRS]: “Elementary data Structures” chapter (except trees).