Reminder of Asymptotic Notation

Let \(f, g : \mathbb{N} \to \mathbb{R} \) be functions. We say that:

- \(f \) is \(O(g) \) if there is some \(n_0 \in \mathbb{N} \) and some \(c > 0 \in \mathbb{R} \) such that for all \(n \geq n_0 \) we have
 \[
 0 \leq f(n) \leq c g(n).
 \]

- \(f \) is \(\Omega(g) \) if there is an \(n_0 \in \mathbb{N} \) and \(c > 0 \) in \(\mathbb{R} \) such that for all \(n \geq n_0 \) we have
 \[
 f(n) \geq c g(n) \geq 0.
 \]

- \(f \) is \(\Theta(g) \), or \(f \) has the same asymptotic growth rate as \(g \), if \(f \) is \(O(g) \) and \(\Omega(g) \).

Worst-case (and best-case) running-time

We almost always work with Worst-case running time in Inf2B:

Definition
The (worst-case) running time of an algorithm \(A \) is the function
\(T_A : \mathbb{N} \to \mathbb{N} \) where \(T_A(n) \) is the maximum number of computation steps performed by \(A \) on an input of size \(n \).

Definition
The (best-case) running time of an algorithm \(A \) is the function
\(B_A : \mathbb{N} \to \mathbb{N} \) where \(B_A(n) \) is the minimum number of computation steps performed by \(A \) on an input of size \(n \).

We only use Best-case for explanatory purposes.

Asymptotic notation for Running-time

How do we apply \(O, \Omega, \Theta \) to analyse the running-time of an algorithm \(A \)?

Possible approach:

- We analyse \(A \) to obtain the worst-case running time function \(T_A(n) \).
- We then go on to derive upper and lower bounds on (the growth rate of) \(T_A(n) \), in terms of \(O(\cdot), \Omega(\cdot) \).

In fact we use asymptotic notation with the analysis, much simpler (no need to give names to constants, takes care of low level detail that isn’t part of the big picture).

- We aim to have matching \(O(\cdot), \Omega(\cdot) \) bounds hence have a \(\Theta(\cdot) \) bound.
- Not always possible, even for apparently simple algorithms.
Example

```plaintext
algA(A,r,s)
1. if r < s then
2. for i ← r to s do
3.   for j ← i to s do
4.     m ← ⌊i+j/2⌋
5.     algB(A,i,m−1)
6.     algB(A,m,j)
7.     m ← ⌊(m+i)/2⌋
8.     algA(A,r,m−1)
9.     algA(A,m,s)
```

algB(A,r,s)
1. if A[r] < A[s] then
2. swap A[r] with A[s]
3. if r < s − r then
4. algA(A,r,s − r)

linSearch

Input: Integer array A, integer k being searched.
Output: The least index i such that A[i] = k.

Algorithm linSearch(A, k)
1. for i ← 0 to A.length − 1 do
2. if A[i] = k then
3. return i
4. return −1

(Lecture Note 1) Worst-case running time $T_{\text{linSearch}}(n)$ satisfies

$$(c_1 + c_2)n + \min\{c_3, c_1 + c_4\} \leq T_{\text{linSearch}}(n) \leq (c_1 + c_2)n + \max\{c_3, c_1 + c_4\}.$$

Best-case running time satisfies $B_{\text{linSearch}}(n) = c_1 + c_2 + c_3.$

$T_{\text{linSearch}}(n) = O(n)$

Proof.
From Lecture Note 1 we have

$$T_{\text{linSearch}}(n) \leq (c_1 + c_2) \cdot n + \max\{c_3, c_1 + c_4\}.$$

Take $n_0 = \max\{c_3, (c_1 + c_4)\}, c = c_1 + c_2 + 1.$ Then for every $n \geq n_0$, we have

$$T_{\text{linSearch}}(n) \leq (c_1 + c_2)n + n_0 \leq (c_1 + c_2 + 1)n = cn.$$

Hence $T_{\text{linSearch}}(n) = O(n).$
Theorem 1

\[T_{\text{linSearch}}(n) = \Omega(n) \]

We know \(T_{\text{linSearch}}(n) = O(n) \).

Also true: \(T_{\text{linSearch}}(n) = O(n \log(n)) \), \(T_{\text{linSearch}}(n) = O(n^2) \).

Is \(T_{\text{linSearch}}(n) = O(n) \) the best we can do?

YES, because ...

\[T_{\text{linSearch}}(n) = \Omega(n) \]

Proof.

\[T_{\text{linSearch}}(n) \geq (c_1 + c_2)n \]

because all \(c_i \) are positive.

Take \(n_0 = 1 \) and \(c = c_1 + c_2 \) in defn of \(\Omega \).

\[T_{\text{linSearch}}(n) = \Theta(n) \].

Misconceptions/Myths about \(O \) and \(\Omega \)

Misconception 1

If we can show \(T_A(n) = O(f(n)) \) for some function \(f : \mathbb{N} \to \mathbb{R} \), then the running time of \(A \) on inputs of size \(n \) is bounded by \(f(n) \) for sufficiently large \(n \).

FALSE: Only guaranteed an upper bound of \(cf(n) \), for some constant \(c > 0 \).

Example: Consider \(\text{linSearch} \). We could have shown \(T_{\text{linSearch}} = O(\frac{1}{2}(c_1 + c_2)n) \) (or \(O(\alpha n) \), for any constant \(\alpha > 0 \)) exactly as we showed \(T_{\text{linSearch}}(n) = O(n) \) but ...

the worst-case for \(\text{linSearch} \) is greater than \(\frac{1}{2}(c_1 + c_2)n \).

Misconceptions/Myths about \(O \) and \(\Omega \)

Misconception 2

Because \(T_A(n) = O(f(n)) \) implies a \(cf(n) \) upper bound on the running-time of \(A \) for all inputs of size \(n \), then \(T_A(n) = \Omega(g(n)) \) implies a similar lower bound on the running-time of \(A \) for all inputs of size \(n \).

FALSE: If \(T_A(n) = \Omega(g(n)) \) for some \(g : \mathbb{N} \to \mathbb{R} \), then there is some constant \(c' > 0 \) such that \(T_A(n) \geq c'g(n) \) for all sufficiently large \(n \).

But \(A \) can be much faster than \(T_A(n) \) on other inputs of length \(n \) that are not worst-case! No lower bound on general inputs of size \(n \). \(\text{linSearch} \) graph is an example.

Insertion Sort

Input: An integer array \(A \)

Output: Array \(A \) sorted in non-decreasing order

Algorithm \(\text{insertionSort}(A) \)

1. for \(j \leftarrow 1 \) to \(A.\text{length} - 1 \) do
2. \hspace{1em} \(a \leftarrow A[j] \)
3. \hspace{1em} \(i \leftarrow j - 1 \)
4. \hspace{1em} \text{while } i \geq 0 \text{ and } A[i] > a \) do
5. \hspace{2em} \(A[i+1] \leftarrow A[i] \)
6. \hspace{2em} \(i \leftarrow i - 1 \)
7. \hspace{2em} \(A[i+1] \leftarrow a \)
Example: Insertion Sort

Input:

\[
\begin{array}{cccccc}
 & 3 & 6 & 5 & 1 & 4 \\
\end{array}
\]

\[j=1\]

\[
\begin{array}{cccccc}
 & 3 & 6 & 5 & 1 & 4 \\
\end{array}
\]

\[j=2\]

\[
\begin{array}{cccccc}
 & 3 & 5 & 6 & 1 & 4 \\
\end{array}
\]

\[j=3\]

\[
\begin{array}{cccccc}
 & 3 & 5 & 6 & 4 & 1 \\
\end{array}
\]

\[j=4\]

\[
\begin{array}{cccccc}
 & 1 & 3 & 4 & 5 & 6 \\
\end{array}
\]

Big-O for \(T_{\text{insertionSort}}(n)\)

Algorithm \(\text{insertionSort}(A)\)

1. \(\text{for } j \leftarrow 1 \text{ to } A.\text{length} - 1 \text{ do}\)
2. \(\quad a \leftarrow A[j]\)
3. \(\quad i \leftarrow j - 1\)
4. \(\quad \text{while } i \geq 0 \text{ and } A[i] > a \text{ do}\)
5. \(\quad \quad A[i + 1] \leftarrow A[i]\)
6. \(\quad \quad i \leftarrow i - 1\)
7. \(\quad A[i + 1] \leftarrow a\)

Line 1 \(O(1)\) time, executed \(A.\text{length} - 1 = n - 1\) times.
Lines 2,3,7 \(O(1)\) time each, executed \(n - 1\) times.
Lines 4,5,6 \(O(1)\)-time, executed together as \textbf{for}-loop. No. of executions depends on \textbf{for}-test, \(j\).
For fixed \(j\), \textbf{for}-loop at 4. takes \textit{at most} \(j\) iterations.

For a fixed \(j\), lines 2-7 take at most
\[
O(1) + O(1) + O(1) + O(j) + O(j) + O(1)
= O(1) + O(j)
= O(1) + O(n)
= O(n).
\]

There are \(n - 1\) different \(j\)-values. Hence
\[
T_{\text{insertionSort}}(n) = (n - 1)O(n) = O(n)O(n) = O(n^2).
\]

Hardest than \(O(n^2)\) bound.
Focus on a \textbf{BAD} instance of size \(n\):
Take input instance \((n, n-1, n-2, \ldots, 2, 1)\).
\> For every \(j = 1, \ldots, n-1\), \text{insertionSort} uses \(j\) executions of line 5 to insert \(A[j]\).

Then
\[
T_{\text{insertionSort}}(n) \geq \sum_{j=1}^{n-1} cj
= c \sum_{j=1}^{n-1} j
= c \frac{n(n-1)}{2}.
\]

So \(T_{\text{insertionSort}}(n) = \Omega(n^2)\) and \(T_{\text{insertionSort}}(n) = \Theta(n^2)\).
“Typical” asymptotic running times

- $\Theta(lg\ n)$ (logarithmic),
- $\Theta(n)$ (linear),
- $\Theta(n\ lg\ n)$ (n-log-n),
- $\Theta(n^2)$ (quadratic),
- $\Theta(n^3)$ (cubic),
- $\Theta(2^n)$ (exponential).

Further Reading

- Lecture notes 2 from last week.
- If you have Goodrich & Tamassia [GT]:
 All of the chapter on “Analysis Tools” (especially the “Seven functions” and “Analysis of Algorithms” sections).
- If you have [CLRS]:
 Read chapter 3 on “Growth of Functions.”