Inf 2B: Asymptotic notation Lecture 2 of ADS thread

Kyriakos Kalorkoti

School of Informatics University of Edinburgh

Intention

"f is O(g)" tells us that the growth rate of f is no worse than that of g. Could be better.

- ▶ c allows us to adjust for constants: n^2 obviously has same growth rate as $3n^2$, $20n^2$, $100n^2$...
 - ▶ consider $n \rightarrow an$ then

$$n^2 \rightarrow a^2 \cdot n^2$$

$$3n^2 \rightarrow a^2 \cdot 3n^2$$

$$20n^2 \rightarrow a^2 \cdot 20n^2$$
:

- $ightharpoonup n_0$ allows a settling in period of atypical behaviour.
- O allows us to concentrate on the big picture rather than details (many being implementation dependent).

Examples of O

- 1. $3n^3 = O(n^3)$. Need c and n_0 so that $3n^3 \le cn^3$ for all $n \ge n_0$. Take c = 3, $n_0 = 0$.
- 2. $3n^3 + 8 = O(n^3)$. For a constant c > 0 we have

$$3n^3 + 8 \le cn^3 \iff 3 + \frac{8}{n^3} \le c$$
 provided $n > 0$.

As n increases $8/n^3$ decreases. Thus

$$3 + \frac{8}{n^3} \le 11$$
 for all $n > 0$.

So we take c = 11, $n_0 = 1$.

We can also take c=4, $n_0=2$ or c=3+8/27, $n_0=3$ etc.

The Big-O Notation

Definition

Let $f,g:\mathbb{N}\to\mathbb{R}$ be functions. We say that f is O(g) if there is some $n_0\in\mathbb{N}$ and some c>0 from \mathbb{R} such that for all $n\geq n_0$ we have

$$f(n) < c g(n)$$
.

In other words:

$$egin{aligned} \mathcal{O}(g) = \left\{f: \mathbb{N}
ightarrow \mathbb{R} \mid \text{there is an } n_0 \in \mathbb{N} \text{ and } c > 0 \text{ in } \mathbb{R} \text{ such that for all } n \geq n_0, \, f(n) \leq cg(n).
ight\} \end{aligned}$$

Notational Convention

Write

1/49

3/49

5/49

f = O(g),

instead of

 $f \in O(g)$.

- Makes it convenient to have chains reasoning with inequalities etc.
- Notation here is from *left to right*. f = O(g) does *not* mean that O(g) = f!
- $f = f_1 + O(g) = f_2 + O(g)$ does not imply that $f_1 = f_2$.
- ▶ Seems strange but easy to get used to it and *very* useful.

More Examples of O

3. $\lg(n) = O(n)$ Intuitively: $\lg(n) < n$ for all $n \ge 1$.

Need a proof. Well

 $\lg(n) < n \iff n < 2^n$, for all n > 0.

Use induction on *n* to prove rhs.

- ▶ Base case n = 1 is clearly true.
- ► For induction step assume claim holds for *n*. Then

 $2^{n+1} = 2 \cdot 2^n > 2n$, by induction hypothesis.

To complete the proof just need to show that $2n \ge n + 1$. Now

$$2n \ge n+1 \iff n \ge 1$$
,

and we have finished.

So we take c = 1 and $n_0 = 1$.

2/49

7/7

6/49

More Examples of O

4. $8n^2 + 10n \lg(n) + 100n + 10000 = O(n^2)$.

We have

$$8n^{2}+10n \lg(n) + 100n + 10000$$

$$< 8n^{2} + 10n \cdot n + 100n + 10000, \text{ for all } n > 0$$

$$\leq 8n^{2} + 10n^{2} + 100n^{2} + 10000n^{2}$$

$$= (8 + 10 + 100 + 10000)n^{2}$$

$$= 10118n^{2}.$$

Thus we can take $n_0 = 1$ and c = 1118.

- ▶ Value for *c* seems rather large.
- Any c > 8 will do, the closer c is to 8 the larger n_0 has to be.
- ► For big-O notation, no point at all in expending more effort just to reduce some constant.

5. $2^{100} = O(1)$.

Take $n_0 = 0$ and $c = 2^{100}$.

Example (using Laws for O)

$$871n^{3} + 13n^{2} \lg^{5}(n) + 18n + 566 = O(n^{3}).$$

$$871n^{3} + 13n^{2} \lg^{5}(n) + 18n + 566$$

$$= 871n^{3} + 13n^{2}O(n) + 18n + 566 \qquad \text{by (8)}$$

$$= 871n^{3} + O(n^{3}) + 18n + 566 \qquad \text{by (3)}$$

$$= 871n^{3} + 18n + 566 + O(n^{3})$$

$$= O(n^{3}) + O(n^{3}) \qquad \text{by (5)}$$

$$= O(n^{3}) \qquad \text{by (2) & (1)}$$

Examples of $f = \Omega(g)$

1. Let $f(n) = 3n^3$ and $g(n) = n^3$. (combining this with Ex 1. for O gives $3n^3 = \Theta(n^3)$)

Let $n_0 = 0$ and c = 1. Then for all $n \ge n_0$, $f(n) = 3n^3 \ge cg(n) = g(n)$.

2. Let $f(n) = \lg(n)$ and $g(n) = \lg(n^2)$.

Well

$$\lg(n^2) = 2\log(n).$$

So take c=1/2 and $n_0=1$. Then for every $n\geq n_0$ we have,

$$f(n) = \lg(n) = \frac{1}{2}2\lg(n) = \frac{1}{2}\lg(n^2) = \frac{1}{2}g(n).$$

"Laws" of Big-O

Theorem: Let $f_1, f_2, g_1, g_2 : \mathbb{N} \to \mathbb{R}$ be functions. Then:

- 1. For any constant a > 0 in \mathbb{R} : $f_1 = O(g_1) \implies af_1 \in O(g_1)$.
- 2. $f_1 = O(g_1)$ and $f_2 = O(g_2) \implies f_1 + f_2 = O(g_1 + g_2)$.
- 3. $f_1 = O(g_1)$ and $f_2 = O(g_2) \implies f_1 f_2 = O(g_1 g_2)$.
- 4. $f_1 = O(g_1)$ and $g_1 = O(g_2) \implies f_1 = O(g_2)$.
- 5. For any $d \in \mathbb{N}$: f_1 polynomial of degree $d \implies f_1 = O(n^d)$.
- 6. For any *constants* a > 0 and b > 1 in \mathbb{R} : $n^a = O(b^n)$.
- 7. For any *constant* a > 0 in \mathbb{R} : $\lg(n^a) = O(\lg(n))$.
- 8. For any *constants* a > 0 and b > 0 in \mathbb{R} : $\lg^a(n) = O(n^b)$.

Big-Ω and Big-Θ

7/49

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}$ be functions.

1. We say that f is $\Omega(g)$ if there is an $n_0 \in \mathbb{N}$ and c > 0 in \mathbb{R} such that for all $n \ge n_0$ we have

$$f(n) \ge c g(n)$$
.

2. We say that f is $\Theta(g)$, or f has the same asymptotic growth rate as g, if f is O(g) and $\Omega(g)$.

Observation:

$$f = \Omega(g) \iff g = O(f).$$

Prove this.

Quick quiz: True or False?

$$\sqrt{n^3} = O(n^2)?$$

True. $\sqrt{n^3} = n^{3/2} \le n^2$.

$$2^{\lfloor \lg n \rfloor} = O(n)?$$

True. $2^{\lfloor \lg n \rfloor} < 2^{\lg n} = n$.

$$2^{\lfloor \lg n \rfloor} = \Omega(n)?$$

True: Let $n \ge 2$. Then $\lfloor \lg n \rfloor \ge (\lg n) - 1 \ge 0$. Hence $2^{\lfloor \lg n \rfloor} \ge 2^{(\lg n) - 1} = n/2$. So take $n_0 = 2, c = 1/2$.

$$n \lg n = \Theta(n^2)$$
?

False: We do have $n \lg n = O(n^2)$ but $n \lg n$ is **not** $\Omega(n^2)$.

11/49

9/49

12/

8/49

10/49

Further Reading

- ► Lecture notes 2 (handed out).
- ► If you have Goodrich & Tamassia [GT]: All of the chapter on "Analysis Tools" (especially the "Seven functions" and "Analysis of Algorithms" sections).

 $\ensuremath{\text{NB}}\xspace$ the title of the book is as given in slides of lecture 1, not as in note 1.

- ► If you have [CLRS]: Read chapter 3 on "Growth of Functions".
- ► Wikipedia has a page about asymptotic notation: en.wikipedia.org/wiki/Asymptotic_notation