
1 / 20

Inf 2B: Introduction to Algorithms
Lecture 1 of ADS thread

Kyriakos Kalorkoti

School of Informatics
University of Edinburgh

2 / 20

Algorithms and Data Structures thread

Taught by Kyriakos Kalorkoti (KK), IF5.26, kk@inf.ed.ac.uk.

Topics:
1: Algorithms, analysing algorithms, Asymptotic notation (for

talking about running-times), Sequential Data Structures,
Tree data structures, Hashing, Priority Queues, Advanced
sorting.

2: Algorithms for searching graphs, applications to graph
problems.

3: Algorithms for the WWW: indexing, searching.

3 / 20

Textbooks
For Algorithms and Data Structures (recommended, not
required.):

I [GT] Data Structures and Algorithms in Java, by Goodrich
& Tamassia (4th or 3rd ed), Wiley.
Gentle textbook, best for this course (doesn’t have WWW
stuff).
Java.

I [CLRS] Introduction to Algorithms, by Cormen, Leiserson,
Rivest & Stein, MIT Press.
Lots of Algorithms & Data Structures.
Technical.
No Java (or any other programing language).
Course text for 3rd year Algorithms and Data Structures
course.

If you will not take 3rd year ADS, choose [GT], but don’t rush
out to buy a book straight away.

4 / 20

Study advice
1. Education is done with you not to you.
2. You are here because you want to learn the subject.
3. Course consists of:

I Lectures.
I Tutorials.
I Practical work (2 assignments only, 1 for each thread).
I Private study.

Deciding not to take an active part in all of these is
deciding to under perform at best and fail at worst.

It is not possible to coast along and revise just before the
exams (unless failure seems like a good idea).

My promise: If you ask for help I will do my utmost to
provide it. But please use the channels above first when
appropriate.

Questions from you: Strongly encouraged, during lectures,
after lectures or email.

5 / 20

Finally:

I Lectures start at 4.10, keep any eye on the clock and wind
down any conversation.

I In lectures either I talk or you talk but not both!
I Laptops, tablets, phones should be put away (unless a

medical condition requires the use of an aid).
I If you have any special needs that need my cooperation

please speak to me.

6 / 20

Our Ingredients

Algorithms Step-by-step procedure (a “recipe”) for performing
a task.

Data Structures Systematic way of organising data and making
it accessible in certain ways.

I We are interested in the design and analysis of “good”
algorithms and data structures.

I Think about very large systems and the need to have them
work within acceptable time.

7 / 20

What you have probably seen already

Data Structures
Arrays, linked lists, stacks, trees.

Algorithm design principles
Recursive algorithms.

Searching and Sorting Algorithms
Linear search and Binary search. Insertion sort,
selection sort.

Other prerequisites:
I The ability to reason mathematically, spot a bad argument

from a mile off.
I Write down a mathematical argument fluently. It should be

a pleasure to read.
I See Note 1 for advice on setting out mathematical

reasoning.

8 / 20

Evaluating algorithms

I
Correctness

I
Efficiency w.r.t.
8
>><

>>:

— running time,
— space (=amount of memory used),
— network traffic,
— number of times secondary storage is accessed.

I
Simplicity

9 / 20

Measuring Running time

The running time of a program depends on a number of factors
such as:

1. The input.
2. The running time of the algorithm.
3. The quality of the implementation and the quality of the

code generated by the compiler.
4. The machine used to execute the program.

We will rarely be concerned with the implementation quality, the
code quality or the machine.

I A given algorithm can be implemented by many different
programs (indeed languages).

10 / 20

Example 1: Linear Search in JAVA

public static int linSearch(int[] A,int k) {

for(int i = 0; i < A.length; i++)

if (A[i] == k)

return i;

return -1;

}

This is Java.
I We want to ignore implementation details, so we map this

to pseudocode.

In reality things are the other way round!

11 / 20

Linear Search in Pseudocode

Input: Integer array A, integer k being searched.
Output: The least index i such that A[i] = k ; otherwise �1.

Algorithm linSearch(A, k)

1. for i 0 to A.length � 1 do
2. if A[i] = k then
3. return i

4. return �1

Suppose A = h19, 5, 6, 77, 2, 1, 90, 3, 4, 22, 1, 5, 6i and k = 1.
What happens?

12 / 20

Worst Case Running Time

Assign a size to each possible input.

Definition
The (worst-case) running time of an algorithm A is the function
TA : N! N where TA(n) is the maximum number of
computation steps performed by A on an input of size n.

Example: linSearch.
I Suppose the size is the length of the array A.
I Worst-case running time is a linear function of size.

Note:
I Implicit assumption that array entries are of bounded size.
I Otherwise we could take sum of all array entry sizes as

measure of input size (plus size of k).

13 / 20

Average Running Time

In general worst-case seems overly pessimistic.

Definition
The average running time of an algorithm A is the function
AVT A : N! R where AVT A(n) is the average number of
computation steps performed by A on an input of size n.

Problems with average time
I What precisely does average mean? What is meant by an

“average” input depends on the application.
I Average time analysis is mathematically very difficult and

often infeasible (OK for linSearch).

14 / 20

Analysis of Algorithms

A nice approach would be to combine:

Worst-Case Analysis + Experiments

We will aim for this but

I Java’s Garbage Collection hampers the quality of our
experiments.

15 / 20

Example 2: Binary Search
Input: Integer array A in increasing order, integers i1, i2, k .
Output: An index i with i1  i  i2 and A[i] = k , if such an i

exists, �1 otherwise.

Algorithm binarySearch(A, k , i1, i2)

1. if i2 < i1 then return �1
2. else
3. j b i1+i2

2 c
4. if k = A[j] then
5. return j

6. else if k < A[j] then
7. return binarySearch(A, k , i1, j � 1)
8. else
9. return binarySearch(A, k , j + 1, i2)

16 / 20

Running-time of Binary search
Input array with n = i2 � i1 + 1 (the number of items in the
region we search).

I Do at most a constant c amount of work.
I If k found done else recurse on array of size about n/2.
I Do a constant c amount of work.
I If k found done else recurse on array of size about n/22.

...
I Do a constant c amount of work.
I If k found done else recurse on array of size about n/2r .

Base case: n/2r = 1, i.e., r = lg(n). Then one more call.
Total work done (time) no more than

c

�
lg(n) + 2

�
.

Better than linSearch?

17 / 20

TlinSearch(n) = 10n + 10,
TbinarySearch(n) = 1000 lg(n) + 1000.

18 / 20

lg n versus n

Put
m = lg n.

By definition
n = 2m.

Now:
m! m + 1 n! 2n

m! m + 5 n! 32n

m! m + 10 n! 1024n

m! m + c n! 2c

n

19 / 20

Some Statistics
Jan 2008 on a DICE machine.

size wc linS avc linS wc binS avc binS
10  1 ms  1 ms  1 ms  1 ms

100  1 ms  1 ms  1 ms  1 ms
1000  1 ms  1 ms  1 ms  1 ms

10000  1 ms  1 ms  1 ms  1 ms
100000  1 ms  1 ms  1 ms  1 ms
200000  1 ms  1 ms  1 ms  1 ms
400000 3 ms  1 ms  1 ms  1 ms
600000 3 ms 1.3 ms  1 ms  1 ms
800000 3 ms 1.5 ms  1 ms  1 ms

1000000 5 ms 2.1 ms  1 ms  1 ms
2000000 7 ms 3.7 ms  1 ms  1 ms
4000000 12 ms 6.9 ms  1 ms  1 ms
6000000 24 ms 11.6 ms  1 ms  1 ms
8000000 24 ms 15.6 ms  1 ms  1 ms

200 repetitions for each size.

20 / 20

Why not just do experiments?
I Consider sorting arrays of the integers 1, 2, . . . , 100 held in

some order.
I Just take a 1% sample of all possible inputs.
I How many experiments?

99! = 9332621544394415268169923885626670049071596826438
162146859296389521759999322991560894146397615651
828625369792082722375825118521091686400000000000
00000000000.

Assume algorithm can sort 1050 instances per second(!).
How long do we need to wait?

99!
60⇥ 60⇥ 24⇥ 366⇥ 1050 ⇡ 2.951269209⇥ 1098 years.

Be seeing you!

