Inf 2B: Graphs II - Applications of DFS

Kyriakos Kalorkoti

School of Informatics
University of Edinburgh
Reminder: Recursive DFS

Algorithm dfs(G)

1. Initialise Boolean array \textit{visited} by setting all entries to FALSE
2. \textbf{for all } \(v \in V \) \textbf{ do}
3. \hspace{1em} \textbf{if not } \textit{visited}[v] \textbf{ then}
4. \hspace{2em} \text{dfsFromVertex}(G, v)

Algorithm dfsFromVertex(G, v)

1. \textit{visited}[v] \rightarrow \text{TRUE}
2. \textbf{for all } w \text{ adjacent to } v \textbf{ do}
3. \hspace{1em} \textbf{if not } \textit{visited}[w] \textbf{ then}
4. \hspace{2em} \text{dfsFromVertex}(G, w)

Runtime: \(T(n, m) = \Theta(n + m) \), using Adjacency List representation.
Trees and Forests

Definition: A *tree* is a connected graph without any cycles (disregarding directions of edges).

Note: In computing we use *rooted* trees, i.e., a distinguished vertex is chosen as the root.

Definition: A *forest* is a collection of trees.

DFS Forests:
A DFS traversing a graph builds up a *forest*:
- vertices are all vertices of the graph,
- edges are those traversed during the DFS.
DFS Forests Example
Connected components of an undirected graph

$G = (V, E)$ undirected graph

Definition

- A subset C of V is connected if for all $v, w \in C$ there is a path from v to w (if G is directed, say strongly connected).
- A connected component of G is a maximal connected subset C of V.
 Maximal means no connected subset C' of V strictly contains C.
- G is connected if it only has one connected component, i.e., if for all vertices v, w there is a path from v to w.
Each vertex of an undirected graph is contained in exactly one connected component.

For each vertex v of an undirected graph, the connected component that contains v is precisely the set of all vertices that are reachable from v.

For an undirected graph G, dfsFromVertex(G, v) visits exactly the vertices in the connected component of v.
Algorithm `connComp(G)`

1. Initialise Boolean array `visited` by setting all entries to `FALSE`
2. for all `v ∈ V` do
3. if `visited[v] = FALSE` then
4. print “New Component”
5. `ccFromVertex(G, v)`
Algorithm ccFromVertex(G, v)

1. $visited[v] \leftarrow \text{TRUE}$
2. print v
3. for all w adjacent to v do
4. if $visited[w] = \text{FALSE}$ then
5. ccFromVertex(G, w)
Topological Sorting

Example:
10 tasks to be carried out. Some of them depend on others.

- Task 0 must be completed before Task 1 can be started.
- Task 1 and Task 2 must be done before Task 3 can start.
- Task 4 must be done before Task 0 or Task 2 can start.
- Task 5 must be done before Task 0 or Task 4 can start.
- Task 6 must be done before Task 4, 5 or 7 can start.
- Task 7 must be done before Task 0 or Task 9 can start.
- Task 8 must be done before Task 7 or Task 9 can start.
- Task 9 must be done before Task 2 or Task 3 can start.
Definition
Let $G = (V, E)$ be a directed graph. A topological order of G is a total order $≺$ of the vertex set V such that for all edges $(v, w) \in E$ we have $v ≺ w$.
Does this graph have a topological order?

Yes, the topological sort is:

\[8 \prec 6 \prec 7 \prec 9 \prec 5 \prec 4 \prec 2 \prec 0 \prec 1 \prec 3. \]
Topological order (continued)

A digraph that has a cycle does not have a topological order.

Definition

A *DAG* (directed acyclic graph) is a digraph without cycles.

Theorem

A digraph has a topological order if and only if it is a DAG.
Classification of vertices during DFS

\[G = (V, E) \] graph, \(v \in V \). Consider \(\text{dfs}(G) \).

- \(v \text{ finished} \) if \(\text{dfsFromVertex}(G, v) \) has been completed.

Vertices can be in the following states:
- not yet visited (call a vertex in this state \textit{white}),
- visited, but not yet finished (\textit{grey}),
- finished (\textit{black}).
Classification of vertices during DFS (continued)

Lemma
Let G be a graph and v a vertex of G. Consider the moment during the execution of $\text{dfs}(G)$ when $\text{dfsFromVertex}(G, v)$ is started. Then for all vertices w we have:

1. If w is white and reachable from v, then w will be black before v.
2. If w is grey, then v is reachable from w.
Topological sorting

\[G = (V, E) \] digraph. Define order on \(V \) as follows:

\[\forall v, w \in V \quad v \prec w \iff w \text{ becomes black before } v. \]

Theorem

If \(G \) is DAG then \(\prec \) is a topological order.

Proof.

Suppose \((v, w) \in E \). Consider \(\text{dfsFromVertex}(G, v) \).

- If \(w \) is already black, then \(v \prec w \).
- If \(w \) is white, then by Lemma part 1, \(w \) will be black before \(v \). Thus \(v \prec w \).
- If \(w \) is grey, then by Lemma part 2, \(v \) is reachable from \(w \).
 So there is a path \(p \) from \(w \) to \(v \). Path \(p \) and edge \((v, w)\) together form a cycle. **Contradiction!** (\(G \) is acyclic . . .)
Algorithm `topSort(G)`

1. Initialise array `state` by setting all entries to `white`.
2. Initialise linked list `L`.
3. for all \(v \in V \) do
4. if `state[v] = white` then
5. sortFromVertex\((G, v)\)
6. print `L`
Algorithm `sortFromVertex(G, v)`

1. `state[v] ← grey`
2. `for all w adjacent to v do`
3. `if state[w] = white then`
4. `sortFromVertex(G, w)`
5. `else if state[w] = grey then`
6. `print “G has a cycle”`
7. `halt`
8. `state[v] ← black`
9. `L.insertFirst(v)`