Inf 2B: Sorting, MergeSort and Divide-and-Conquer Lecture 7 of ADS thread

Kyriakos Kalorkoti

School of Informatics University of Edinburgh

The Sorting Problem

Input: Array *A* of *items* with comparable *keys*. *Task:* Sort the items in *A* by increasing keys.

The number of items to be sorted is usually denoted by *n*.

Worst-case running-time:

What are the bounds on $T_{Sort}(n)$ for our Sorting Algorithm Sort.

In-place or not?:

A sorting algorithm is *in-place* if it can be (simply) implemented on the input array, with only O(1) extra space (extra variables).

Stable or not?:

A sorting algorithm is *stable* if for every pair of indices with A[i].key = A[j].key and i < j, the entry A[i] comes before A[j] in the output array.

Insertion Sort

Algorithm insertionSort(*A*)

```
1. for j \leftarrow 1 to A.length - 1 do

2. a \leftarrow A[j]

3. i \leftarrow j - 1

4. while i \ge 0 and A[i].key > a.key do

5. A[i+1] \leftarrow A[i]

6. i \leftarrow i - 1

7. A[i+1] \leftarrow a
```

- Asymptotic worst-case running time: Θ(n²).
- The worst-case (which gives $\Omega(n^2)$) is $\langle n, n-1, \dots, 1 \rangle$.
- Both stable and in-place.

2nd sorting algorithm - Merge Sort

Merge Sort - recursive structure

Algorithm mergeSort(A, i, j)

1. **if**
$$i < j$$
 then
2. $mid \leftarrow \lfloor \frac{i+j}{2} \rfloor$
3. mergeSort(A, i, mid)
4. mergeSort($A, mid + 1, j$)
5. merge(A, i, mid, j)

Running Time:

$$T(n) = \begin{cases} \Theta(1), & \text{for } n \leq 1; \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + T_{\text{merge}}(n) + \Theta(1), & \text{for } n \geq 2. \end{cases}$$

How do we perform the merging?

Merging the two subarrays

New array *B* for output. $\Theta(j - i + 1)$ time (linear time) always (best and worst cases).

Merge pseudocode

Algorithm merge(A, i, mid, j)

- 1. new array *B* of length j i + 1
- **2**. $k \leftarrow i$
- $3. \quad \ell \leftarrow \textit{mid} + 1$
- **4**. *m* ← 0
- 5. while $k \leq mid$ and $\ell \leq j$ do
- 6. if A[k].key $\langle = A[\ell]$.key then
- 7. $B[m] \leftarrow A[k]$
- 8. $k \leftarrow k+1$
- 9. else
- 10. $B[m] \leftarrow A[\ell]$
- 11. $\ell \leftarrow \ell + 1$

12. $m \leftarrow m + 1$

- 13. while $k \leq mid$ do
- 14. $B[m] \leftarrow A[k]$
- 15. $k \leftarrow k + 1$
- 16. $m \leftarrow m + 1$
- 17. while $\ell \leq j$ do
- 18. $B[m] \leftarrow A[\ell]$
- $19. \qquad \ell \leftarrow \ell + 1$
- **20**. $m \leftarrow m + 1$
- **21.** for m = 0 to j i do
- **22**. $A[m+i] \leftarrow B[m]$

Question on mergeSort

What is the status of mergeSort in regard to *stability* and *in-place sorting*?

- 1. Both stable and in-place.
- 2. Stable but not in-place.
- 3. Not stable, but is in-place.
- 4. Neither stable nor in-place.

Answer: not in-place but it is stable.

If line 6 reads < instead of <= , we have sorting but NOT Stability.

Analysis of Mergesort

merge

$$T_{merge}(n) = \Theta(n)$$

mergeSort

$$T(n) = \begin{cases} \Theta(1), & \text{for } n \leq 1; \\ T(\lceil \frac{n}{2} \rceil) + T(\lfloor \frac{n}{2} \rfloor) + T_{\text{merge}}(n) + \Theta(1), & \text{for } n \geq 2. \end{cases}$$
$$= \begin{cases} \Theta(1), & \text{for } n \leq 1; \\ T(\lceil \frac{n}{2} \rceil) + T(\lfloor \frac{n}{2} \rfloor) + \Theta(n), & \text{for } n \geq 2. \end{cases}$$

Solution to recurrence:

$$T(n) = \Theta(n \lg n).$$

Solving the mergeSort recurrence

Write with constants c, d:

$$T(n) = \begin{cases} c, & \text{for } n \leq 1; \\ T(\lceil \frac{n}{2} \rceil) + T(\lfloor \frac{n}{2} \rfloor) + dn, & \text{for } n \geq 2. \end{cases}$$

Suppose $n = 2^k$ for some *k*. Then no floors/ceilings.

$$T(n) = \begin{cases} c, & \text{for } n = 1; \\ 2T(\frac{n}{2}) + dn, & \text{for } n \geq 2. \end{cases}$$

Solving the mergeSort recurrence Put $\ell = \lg n$ (hence $2^{\ell} = n$).

$$T(n) = 2T(n/2) + dn$$

= $2(2T(n/2^2) + d(n/2)) + dn$
= $2^2T(n/2^2) + 2dn$
= $2^2(2T(n/2^3) + d(n/2^2)) + 2dn$
= $2^3T(n/2^3) + 3dn$

$$= 2^k T(n/2^k) + k dn$$

- $= 2^{\ell} T(n/2^{\ell}) + \ell dn$
- $= nT(1) + \ell dn$
- = $cn + dn \lg(n)$
- $= \Theta(n \lg(n)).$

Can extend to *n* not a power of 2 (see notes).

ŝ

Merge Sort vs. Insertion Sort

Merge Sort is much more efficient

But:

- If the array is "almost" sorted, Insertion Sort only needs "almost" linear time, while Merge Sort needs time ⊖(n lg(n)) even in the best case.
- For very small arrays, Insertion Sort is better because Merge Sort has overhead from the recursive calls.
- Insertion Sort sorts in place, mergeSort does not (needs Ω(n) additional memory cells).

Divide-and-Conquer Algorithms

- Divide the input instance into several instances P₁, P₂,... P_a of the same problem of smaller size -"setting-up".
- Recursively solve the problem on these smaller instances.
 - Solve small enough instances directly.
- Combine the solutions for the smaller instances
 P₁, P₂,... P_a to a solution for the original instance. Do some "extra work" for this.

Analysing Divide-and-Conquer Algorithms

Analysis of divide-and-conquer algorithms yields recurrences like this:

$$T(n) = \begin{cases} \Theta(1), & \text{if } n < n_0; \\ T(n_1) + \ldots + T(n_a) + f(n), & \text{if } n \ge n_0. \end{cases}$$

f(n) is the time for "setting-up" and "extra work."

Usually recurrences can be simplified:

$$T(n) = \begin{cases} \Theta(1), & \text{if } n < n_0; \\ aT(n/b) + \Theta(n^k), & \text{if } n \ge n_0, \end{cases}$$

where $n_0, a, k \in \mathbb{N}$, $b \in \mathbb{R}$ with $n_0 > 0$, a > 0 and b > 1 are constants.

(Disregarding floors and ceilings.)

The Master Theorem

Theorem: Let $n_0 \in \mathbb{N}$, $k \in \mathbb{N}_0$ and $a, b \in \mathbb{R}$ with a > 0 and b > 1, and let $T : \mathbb{N} \to \mathbb{R}$ satisfy the following recurrence:

$$T(n) = \begin{cases} \Theta(1), & \text{if } n < n_0; \\ aT(n/b) + \Theta(n^k), & \text{if } n \ge n_0. \end{cases}$$

Let $e = \log_b(a)$; we call e the critical exponent. Then

$$T(n) = \begin{cases} \Theta(n^e), & \text{if } k < e & (I);\\ \Theta(n^e \lg(n)), & \text{if } k = e & (II);\\ \Theta(n^k), & \text{if } k > e & (III). \end{cases}$$

▶ Theorem still true if we replace aT(n/b) by

$$a_1 T(\lfloor n/b \rfloor) + a_2 T(\lceil n/b \rceil)$$

for $a_1, a_2 \ge 0$ with $a_1 + a_2 = a$.

Master Theorem in use

Example 1:

We can "read off" the recurrence for mergeSort:

$$\mathcal{T}_{ ext{mergeSort}}(n) = egin{cases} \Theta(1), & n \leq 1; \ \mathcal{T}_{ ext{mergeSort}}(\lceil rac{n}{2} \rceil) + \mathcal{T}_{ ext{mergeSort}}(\lfloor rac{n}{2}
floor) + \Theta(n), & n \geq 2. \end{cases}$$

In Master Theorem terms, we have

$$n_0 = 2, \quad k = 1, \quad a = 2, \quad b = 2.$$

Thus

$$e = \log_b(a) = \log_2(2) = 1.$$

Hence

$$T_{mergeSort}(n) = \Theta(n \lg(n))$$

by case (II).

... Master Theorem

Example 2: Let T be a function satisfying

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq 1; \\ 7T(n/2) + \Theta(n^4), & \text{if } n \geq 2. \end{cases}$$

$$e = \log_b(a) = \log_2(7) < 3$$

So $T(n) = \Theta(n^4)$ by case (III).

Further Reading

- If you have [GT], the "Sorting Sets and Selection" chapter has a section on mergeSort(.)
- If you have [CLRS], there is an entire chapter on recurrences.