Inf 2B: Sorting, MergeSort and
Divide-and-Conquer
Lecture 7 of ADS thread

Kyriakos Kalorkoti

School of Informatics
University of Edinburgh

The Sorting Problem

Input: Array A of items with comparable keys.
Task: Sortthe itemsin A by increasing keys.

The number of items to be sorted is usually denoted by n.

What is important?

Worst-case running-time:
What are the bounds on Tgq(n) for our Sorting Algorithm Sort.

In-place or not?:
A sorting algorithm is in-place if it can be (simply) implemented
on the input array, with only O(1) extra space (extra variables).

Stable or not?:

A sorting algorithm is stable if for every pair of indices with
Ali].key = A[j].key and i < j, the entry A[i] comes before A[j] in
the output array.

Insertion Sort

Algorithm insertionSort(A)

1. forj < 1to A.length— 1 do

2 a<+ Alj]

3 i j—1

4. while / > 0 and A[i].key > a.key do
5 Ali + 1] « A[j]

6 [i—1

7 Ali+1]«+ a

» Asymptotic worst-case running time: 9(n?).

» The worst-case (which gives Q(n?)) is (n,n—1,...

» Both stable and in-place.

2nd sorting algorithm - Merge Sort

112[6 4]0 [13]8]5]

split in

the middle Divide
2l6]4]o] [13]8]5]

regt?rr;ively &
[4l6]oliz] [s]s]13]

merge solutions
together Conquer

(4] 5] 6] 8] 9] 13]

Merge Sort - recursive structure

Algorithm mergeSort(A, i,)

1. ifi<jthen

2. mid + | 5]

3. mergeSort(A, i, mid)

4 mergeSort(A, mid + 1,j)
5 merge(A, i, mid, j)

Running Time:

T(n) = o(1), forn <1,
- T([”/21) + T(Ln/2j) + Tmerge(n) + 9(1), forn> 2.

How do we perform the merging?

Merging the two subarrays

A [e]ulz] [4]2[2] | L[]
k=i I=mid+1 m
A [e]ulz] [4]2]2] | [efel]
k I
A ‘8‘11‘12‘ ‘4‘9‘21‘ ‘ ‘4‘8‘9‘ ‘
Kk |
A [o]ulz] [4]2[2] |

k |

New array B for output.
O(j — i+ 1) time (linear time) always (best and worst cases).

Merge pseudocode

Algorithm merge(A, i, mid,)

©

10.
11.
12.

© N o~

new array B of length j — j + 1
k<« i
£+ mid +1
m<«+0
while k < mid and ¢ < j do
if Alk].key <= A[(].key then
B[m] «+ A[K]
K+ k+1
else
B[m] «+ A[]
{—0+1
m<«—m+1

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

while kK < mid do
B[m] « A[K]
K+ k+1
m«+— m-+1
while ¢/ < j do
B[m] < A[]
—0+1
m<+— m-+1
form=0toj—ido
Alm+i] < B[m]

Question on mergeSort

What is the status of mergeSort in regard to stability and
in-place sorting?

1. Both stable and in-place.

2. Stable but not in-place.

3. Not stable, but is in-place.

4. Neither stable nor in-place.

Answer: not in-place but it is stable.

If line 6 reads < instead of <=, we have sorting but NOT
Stability.

Analysis of Mergesort

> merge
Tmerge(n) = ©(n)

» mergeSort

T(n) = o(1), forn < 1;
T([%W) + T(L'%J) + Tmerge(n) +06(1), forn>2.

~—

~_jeq), forn<1;
TN + TR +©(n), forn>2.

~—

Solution to recurrence:

T(n)=0©(nlg n).

Solving the mergeSort recurrence

Write with constants ¢, d:

. e, forn<t,;
(n) = T((§1)+T(L’§’J)+dna forn > 2.

Suppose n = 2 for some k. Then no floors/ceilings.

c, forn=1;
T(n) = n
2T(5)+dn, forn>2.

Solving the mergeSort recurrence
Put ¢ = Ig n (hence 2¢ = n).

T(n) =

2T(n/2) +dn

2(2T(n/2?) + d(n/2)) + dn
22T(n/22) + 2dn

22(2T(n/2%) + d(n/22)) + 2dn
23T(n/23) + 3dn

2KT(n/2%) + kdn
2T(n/2% + ¢dn
nT(1)+ ¢dn
cn+ dnlg(n)
©(nlg(n)).

Can extend to n not a power of 2 (see notes).

Merge Sort vs. Insertion Sort

» Merge Sort is much more efficient

But:
» If the array is “almost” sorted, Insertion Sort only needs
“almost” linear time, while Merge Sort needs time
©(nlg(n)) even in the best case.

» For very small arrays, Insertion Sort is better because
Merge Sort has overhead from the recursive calls.

» Insertion Sort sorts in place, mergeSort does not (needs
Q(n) additional memory cells).

Divide-and-Conquer Algorithms

» Divide the input instance into several instances
Py, Ps, ... P, of the same problem of smaller size -
“setting-up”.

» Recursively solve the problem on these smaller instances.

» Solve small enough instances directly.

» Combine the solutions for the smaller instances
Py, P>, ... P, to a solution for the original instance. Do
some “extra work" for this.

Analysing Divide-and-Conquer Algorithms

Analysis of divide-and-conquer algorithms yields recurrences
like this:

. o(1), if n < ng;
() = T(m)+ ...+ T(na) + f(n), ifn>no.

f(n) is the time for “setting-up" and “extra work."
Usually recurrences can be simplified:

T(n) — o(1), if n < ng;
()= aT(n/b) +©(n¥), if n> ny,

where ng,a,k e N,be Rwithny >0,a>0and b > 1 are

constants.
(Disregarding floors and ceilings.)

The Master Theorem

Theorem: Letng € N, k € Ny and a,b € R with a > 0 and
b>1,andlet T : N — R satisfy the following recurrence:

T(n) = o(1), if n < ng;
"~ | aT(n/b) +0©(n%), ifn> np.

Let e = log,(a); we call e the critical exponent. Then

O(n®), ifk <e ();
T(n)=< ©(n°lg(n)), ifk=e ();
@(n"), if k> e (.

Theorem still true if we replace aT(n/b) by
aiT([n/b])+ a2 T([n/b])

for a;,a> > 0with a; + a» = a.

Master Theorem in use

Example 1:
We can “read off” the recurrence for mergeSort:

o(1), n<it:

Tergesort(n) =
mergesort { TmergeSort((g]) + TmergeSOrt(LgJ) +06(n), nx>2.

In Master Theorem terms, we have
=2 k=1, a=2, b=2
Thus
e = log,(a) =10g,(2) = 1.

Hence
7-mergeSort(n) = @(n Ig(n))

by case (ll).

.Master Theorem

Example 2: Let T be a function satisfying

() - o(1), if n<1;
- | 7T(n/2) +©(n%), ifn>2.

e =logy(a) =log,(7) < 3

So T(n) = ©(n*) by case (ll) .

Further Reading

» If you have [GT], the “Sorting Sets and Selection" chapter
has a section on mergeSort(.)

» If you have [CLRS], there is an entire chapter on
recurrences.

