Inf 2B: AVL Trees
Lecture 5 of ADS thread

Kyriakos Kalorkoti

School of Informatics
University of Edinburgh
Dictionaries

A Dictionary stores key–element pairs, called items. Several elements might have the same key. Provides three methods:

- **findElement**(k): If the dictionary contains an item with key k, then return its element; otherwise return the special element NO_SUCH_KEY.
- **insertItem**(k, e): Insert an item with key k and element e.
- **removeItem**(k): If the dictionary contains an item with key k, then delete it and return its element; otherwise return NO_SUCH_KEY.

Assumption: we have a total order on keys (always the case in applications).

Note: We are concerned entirely with fast access and storage so focus on keys.
ADT Dictionary & its implementations

List implementation:
Θ(1) time for InsertItem(k, e) but Θ(n) for findElement(k) and removeItem(k).

HashTable implementation (with Bucket Arrays):
Good average-case performance for $n = \Omega(N)$.
Worst-case running time: is InsertItem(k, e) Θ(1), findElement(k) and removeItem(k) are both Θ(n).

Binary Search Tree implem. (without Balancing):
Good in the average-case—about Θ(lg n) for all operations.
Worst-case running time: Θ(n) for all operations.

Balanced Binary search trees:
Worst-case is Θ(lg n) for all operations.
Binary Search Trees

Abstract definition: A binary tree is either empty or has a root vertex with a left and a right child each of which is a tree.

- Recursive datatype definition.

So every vertex v, either:

(i) has two children (v is an internal vertex), or
(ii) has no children (v is a leaf).

An internal vertex v has a left child and a right child which might be another internal vertex or a leaf.

A near leaf is an internal vertex with one or both children being leaves.

Definition

A tree storing (key, element) pairs is a Binary Search Tree if for every internal vertex v, the key k of v is:

- greater than or equal to every key in v’s left subtree, and
- less than or equal to every key in v’s right subtree.
Key parameter for runtimes: height

- Given any vertex v of a tree T and a leaf there is a unique path form the vertex to the leaf:
 - length of path defined as number of internal vertices.
- The *height* of a vertex is the maximum length over all paths from it to leaves.
- The height of a tree is the height of the root.
- Note that if v has left child l and right child r then
 \[\text{height}(v) = 1 + \max\{\text{height}(l), \text{height}(r)\}. \]
- If we insert v_r along the path v_1, v_2, \ldots, v_r then only the heights of v_1, v_2, \ldots, v_r might be affected, all other vertices keep their previous height.
Binary Search Trees for *Dictionary*

Leaves are kept empty.

Algorithm `findElement(k)`

1. **if** `isEmpty(T)` **then** **return** `NO_SUCH_KEY`
2. **else**
3. \(u \leftarrow root \)
4. **while** ((\(u \) is not null) **and** \(u.key \neq k \)) **do**
5. \begin{align*}
6. &\quad **if** (k < u.key) \quad u \leftarrow u.left \\
7. &\quad **else** \quad u \leftarrow u.right
8. \end{align*}
9. **od**
10. **if** (\(u \) is not null) **and** \(u.key = k \) **then** **return** \(u.elt \)
11. **else** **return** `NO_SUCH_KEY`

`findElement` runs in \(O(h) \) time, where \(h \) is height.
Binary Search Trees
Algorithm `insertItemBST(k, e)`

1. Perform `findElement(k)` to find the “right” place for an item with key `k` (if it finds `k` high in the tree, walk down to the “near-leaf” with largest key no greater than `k`).
2. Neighbouring leaf vertex `u` becomes internal vertex, `u.key ← k, u.elt ← e.`
Algorithm `removeItemBST(k)`

1. Perform `findElement(k)` on the tree to get to vertex `t`.
2. if we find `t` with `t.key = k`,
3. then remove the item at `t`, set `e = t.elt`.
4. Let `u` be “near-leaf” closest to `k`. Move `u`’s item up to `t`.
5. else return `NO_SUCH_KEY`
Worst-case running time

Theorem: For the *binary search tree* implementation of Dictionary, all methods (*findElement*, *insertItemBST*, *removeItemBST*) have asymptotic worst-case running time $\Theta(h)$, where h is the height of the tree. (can be $\Theta(n)$).
1. A vertex of a tree is *balanced* if the heights of its children differ by at most 1.

2. An *AVL tree* is a binary search tree in which all vertices are balanced.
Not an AVL tree:
An AVL tree
The height of AVL trees

Theorem: The height of an AVL tree storing n items is $O(\lg(n))$.

Corollary: The running time of the binary search tree methods `findElement`, `insertItem`, `removeItem` is $O(\lg(n))$ on an AVL tree.

Let $n(h)$ denote minimum number of items stored in an AVL tree of height h. So $n(1) = 1$, $n(2) = 2$, $n(3) = 4$.

Claim: $n(h) > 2^{h/2} - 1$.

\[
\begin{align*}
n(h) &> 1 + n(h - 1) + n(h - 2) \\
&> 1 + 2^{h-1} - 1 + 2^{h-2} - 1 \\
&= (2^{-\frac{1}{2}} + 2^{-1}) \cdot 2^{\frac{h}{2}} - 1 \\
&> 2^{\frac{h}{2}} - 1.
\end{align*}
\]

Problem: After we apply `insertItem` or `removeItem` to an AVL tree, the resulting tree might no longer be an AVL tree.
Example

AVL tree. INSERT 60
not AVL now ...
We can rotate …
Now is AVL tree. INSERT 44
Example (cont’d)

AVL tree.
Restructuring

- z unbalanced vertex of minimal height
- y child of z of larger height
- x child of y of larger height (exists because 1 ins/del unbalanced the tree).
- V, W subtrees rooted at children of x
- X subtree rooted at sibling of x
- Y subtree rooted at sibling of y

Then

\[
\begin{align*}
\text{height}(V) - 1 & \leq \text{height}(W) \leq \text{height}(V) + 1 \\
\max\{\text{height}(V), \text{height}(W)\} & = \text{height}(X) \\
\max\{\text{height}(V), \text{height}(W)\} & = \text{height}(Y).
\end{align*}
\]
A clockwise single rotation

(a)

(b)
An anti-clockwise single rotation
An anti-clockwise clockwise double rotation
A clockwise anti-clockwise double rotation

(a)

(b)
Rotations

After an InsertItem():
We can always rebalance using just one *single rotation* or one *double rotation* (only 2x2 cases in total).

single rotation:
We make \(y \) the new root (of rebalancing subtree), \(z \) moves down, and the \(X \) subtree crosses to become 2nd child of \(z \) (with \(X \) as sibling).

double rotation:
We make \(x \) the new root, \(y \) and \(z \) become its children, and the two subtrees of \(x \) get split between each side.

\(\Theta(1) \) time for a single or double rotation.
The insertion algorithm

Algorithm insertItem\((k, e)\)

1. Insert \((k, e)\) into the tree with insertItemBST. Let \(u\) be the newly inserted vertex.
2. Find first unbalanced vertex \(z\) on the path from \(u\) to root.
3. if there is no such vertex,
4. then return
5. else Let \(y\) and \(x\) be child, grandchild of \(z\) on \(z \rightarrow u\) path.
6. Apply the appropriate rotation to \(x, y, z\). return
Example (cont’d)

AVL tree. REMOVE 10.
Not AVL tree . . . We rotate
Still not AVL . . . We rotate again.
Example (cont’d)

AVL tree again.
Rotations

After a removeItem():
We may need to re-balance “up the tree”.

This requires $O(\lg n)$ rotations at most, each takes $O(1)$ time.
The removal algorithm

Algorithm `removeItem(k)`

1. Remove item \((k, e)\) with key \(k\) from tree using `removeItemBST`. Let \(u\) be leaf replacing removed vertex.
2. **while** \(u\) is not the root **do**
3. let \(z\) be the parent of \(u\)
4. **if** \(z\) is unbalanced **then**
5. do the appropriate rotation at \(z\)
6. let \(u\) be the parent of \(u\)
7. **return** \(e\)
Question on heights of AVL trees

- By definition of an AVL tree, for every internal vertex \(v \), the difference between the height of the left child of \(v \) and the right child of \(v \) is at most 1.
- How large a difference can there be in the heights of any two vertices at the same “level” of an AVL tree?
 - 1.
 - 2.
 - At most \(\lg(n) \).
 - Up to \(n \).

Answer: At most \(\lg(n) \).
Example of “globally-less-balanced” AVL tree

For this example, \(n = 33, \lg(n) > 5. \)
Ordered Dictionaries

The OrderedDictionary ADT is an extension of the Dictionary ADT that supports the following additional methods:

- closestKeyBefore\((k) \): Return the key of the item with the largest key less than or equal to \(k \).
- closestElemBefore\((k) \): Return the element of the item with the largest key less than or equal to \(k \).
- closestKeyAfter\((k) \): Return the key of the item with the smallest key greater than or equal to \(k \).
- closestElemAfter\((k) \): Return the element of the item with the smallest key greater than or equal to \(k \).
Range Queries

`findAllItemsBetween(k_1, k_2)`: Return a list of all items whose key is between k_1 and k_2.
Binary Search Trees support Ordered Dictionaries AND Range Queries well.
Reading and Resources

- If you have [GT]:
 The Chapter on “Binary Search Trees” has a nice treatment of AVL trees. The chapter on “Trees” has details of tree traversal etc.

- If you have [CLRS]:
 The balanced trees are Red-Black trees, a bit different from AVL trees.