
Inf 2B: Sequential Data Structures
Lecture 3 of ADS thread

Kyriakos Kalorkoti

School of Informatics
University of Edinburgh

1 / 1



Abstract Data Types (ADTs)

The “Specification Language" for Data Structures. An ADT
consists of:

I a mathematical model of the data;
I methods for accessing and modifying the data.

An ADT does not specify:
I How the data should be organised in memory (though the

ADT may suggest to us a particular structure).
I Which algorithms should be used to implement the

methods.
An ADT is what, not how.

2 / 1



Data Structures

how . . .
A data structure realising an ADT consists of:

I collections of variables for storing the data;
I algorithms for the methods of the ADT.

In terms of JAVA:

ADT ↔ JAVA interface
data structure ↔ JAVA class

The data structure (with algorithms) has a large influence on
the algorithmic efficiency of the implementation.

3 / 1



Stacks

A Stack is an ADT with the following methods:
I push(e): Insert element e.
I pop(): Remove the most recently inserted element and

return it;
I an error occurs if the stack is empty.

I isEmpty(): Returns TRUE if the stack is empty, FALSE

otherwise.
I Last-In First-Out (LIFO).

Can implement Stack with worst-case time O(1) for all
methods, with either an array or a linked list.

The reason we do so well? . . . Very simple operations.

4 / 1



Applications of Stacks
I Executing Recursive programs.
I Depth-First Search on a graph (coming later).
I Evaluating (postfix) Arithmetic expressions.

Algorithm postfixEval(s1 . . . sk )

1. for i ← 1 to k do
2. if (si is a number) then push(si)
3. else (si must be a (binary) operator)
4. e2← pop();
5. e1← pop();
6. a ← e1 si e2;
7. push(a)
8. return pop()

I Example: 6 4 - 3 * 10 + 11 13 - *

5 / 1



Queues

A Queue is an ADT with the following methods:
I enqueue(e): Insert element e.
I dequeue(): Remove the element inserted the longest time

ago and return it;
I an error occurs if the queue is empty.

I isEmpty(): Return TRUE if the queue is empty and FALSE

otherwise.
I First-In First-Out (FIFO).

Queue can easily be realised by a data structures based either
on arrays or on linked lists.
Again, all methods run in O(1) time (simplicity).

6 / 1



Sequential Data

Mathematical model of the data: a linear sequence of
elements.

I A sequence has well-defined first and last elements.
I Every element of a sequence except the last has a unique

successor.
I Every element of a sequence except the first has a unique

predecessor.
I The rank of an element e in a sequence S is the number of

elements before e in S.
Stacks and Queues are sequential.

7 / 1



Arrays and Linked Lists abstractly

An array, a singly linked list, and a doubly linked list storing
objects o1,o2,o3,o4,o5:

o1 o2 o3 o4 o5

o1 o2 o3 o4 o5

o1 o2 o3 o5o4

8 / 1



Arrays and Linked Lists in Memory

An array, a singly linked list, and a doubly linked list storing
objects o1,o2,o3,o4,o5:

o1 o2 o3 o5o4

o1o2 o3 o4o5

o1 o2o3 o4 o5

9 / 1



Vectors

A Vector is an ADT for storing a sequence S of n elements that
supports the following methods:

I elemAtRank(r): Return the element of rank r ; an error
occurs if r < 0 or r > n − 1.

I replaceAtRank(r ,e): Replace the element of rank r with e;
an error occurs if r < 0 or r > n − 1.

I insertAtRank(r ,e): Insert a new element e at rank r (this
increases the rank of all following elements by 1); an error
occurs if r < 0 or r > n.

I removeAtRank(r): Remove the element of rank r (this
reduces the rank of all following elements by 1); an error
occurs if r < 0 or r > n − 1.

I size(): Return n, the number of elements in the sequence.

10 / 1



Array Based Data Structure for Vector

Variables
I Array A (storing the elements)
I Integer n = number of elements in the sequence

11 / 1



Array Based Data Structure for Vector

Methods

Algorithm elemAtRank(r)

1. return A[r ]

Algorithm replaceAtRank(r ,e)

1. A[r ]← e

Algorithm insertAtRank(r ,e)

1. for i ← n downto r + 1 do
2. A[i]← A[i − 1]
3. A[r ]← e
4. n← n + 1

insertAtRank assumes the array is big enough!
See later . . .

12 / 1



Array Based Data Structure for Vector

Algorithm removeAtRank(r)

1. for i ← r to n − 2 do
2. A[i]← A[i + 1]
3. n← n − 1

Algorithm size()

1. return n

Running times (for Array based implementation)
Θ(1) for elemAtRank, replaceAtRank, size
Θ(n) for insertAtRank, removeAtRank (worst-case)

13 / 1



Abstract Lists
List is a sequential ADT with the following methods:

I element(p): Return the element at position p.
I first(): Return position of the first element; error if empty.
I isEmpty(): Return TRUE if the list is empty, FALSE

otherwise.
I next(p): Return the position of the element following the

one at position p; an error occurs if p is the last position.
I isLast(p): Return TRUE if p is last in list, FALSE otherwise.
I replace(p,e): Replace the element at position p with e.
I insertFirst(e): Insert e as the first element of the list.
I insertAfter(p,e): Insert element e after position p.
I remove(p): Remove the element at position p.

Plus: last(), previous(p), isFirst(p), insertLast(e), and
insertBefore(p,e)

14 / 1



Realising List with Doubly Linked Lists

Variables
I Positions of a List are realised by nodes having fields

element, previous, next.
I List is accessed through node-variables first and last.

Method (example)

Algorithm insertAfter(p,e)

1. create a new node q
2. q.element ← e
3. q.next ← p.next
4. q.previous ← p
5. p.next ← q
6. q.next .previous ← q

15 / 1



Realising List using Doubly Linked Lists

Method (example)

Algorithm remove(p)

1. p.previous.next ← p.next
2. p.next .previous ← p.previous
3. delete p

Running Times (for Doubly Linked implementation).
All operations take Θ(1) time ...

ONLY BECAUSE of pointer representation (p is a direct link)

O(1) bounds partly because we have simple methods.

search would be inefficient in this implementation of List.

16 / 1



Dynamic Arrays

What if we try to insert too many elements into a fixed-size
array?

The solution is a Dynamic Array.

Here we implement a dynamic VeryBasicSequence
(essentially a queue with no dequeue()).

17 / 1



VeryBasicSequence

VeryBasicSequence is an ADT for sequences with the following
methods:

I elemAtRank(r): Return the element of S with rank r ; an
error occurs if r < 0 or r > n − 1.

I replaceAtRank(r ,e): Replace the element of rank r with e;
an error occurs if r < 0 or r > n − 1.

I insertLast(e): Append element e to the sequence.
I size(): Return n, the number of elements in the sequence.

18 / 1



Dynamic Insertion

Algorithm insertLast(e)

1. if n < A.length then
2. A[n]← e
3. else � n = A.length, i.e., the array is full
4. N ← 2(A.length + 1)
5. Create new array A′ of length N
6. for i = 0 to n − 1 do
7. A′[i]← A[i]
8. A′[n]← e
9. A← A′

10. n← n + 1

19 / 1



Analysis of running-time

Worst-case analysis
elemAtRank, replaceAtRank, and size have Θ(1) running-time.
insertLast has Θ(n) worst-case running time for an array of
length n (instead of Θ(1))

In Amortised analysis we consider the total running time of a
sequence of operations.

Theorem
Inserting m elements into an initially empty VeryBasicSequence
using the method insertLast takes Θ(m) time.

20 / 1



Amortised Analysis
I m insertions I(1), . . . , I(m). Most are cheap (cost: Θ(1)),

some are expensive (cost: Θ(j)).
I Expensive insertions: I(i1), . . . , I(i`), 1 ≤ i1 < . . . < i` ≤ m.

i1 = 1, i2 = 3, i3 = 7, . . . , ij+1 = 2ij + 1, . . .
⇒ 2r−1 ≤ ir < 2r

⇒ ` ≤ lg(m) + 1.

∑̀
j=1

O(ij) +
∑

1≤i≤m
i 6=i1,...,i`

O(1) ≤ O
(∑̀

j=1

ij
)

+ O(m)

≤ O
(∑̀

j=1

2j
)

+ O(m)

= O
(

2lg(m)+2 − 2
)

+ O(m)

= O(4m − 2) + O(m)

= O(m).
21 / 1



Reading

I Java Collections Framework: Stack, Queue,
Vector. (Also, Java’s ArrayList behaves like a dynamic
array).

I Lecture notes 3 (handed out).
I If you have [GT]:

Chapters on “Stacks, Queues and Recursion” and
“Vectors, Lists and Sequences”.

I If you have [CLRS]:
“Elementary data Structures” chapter (except trees).

22 / 1


