Inf 2B: Sequential Data Structures
Lecture 3 of ADS thread
Kyriakos Kalorkoti

School of Informatics
University of Edinburgh

Abstract Data Types (ADTs)

The “Specification Language" for Data Structures. An ADT
consists of:

» a mathematical model of the data;
» methods for accessing and modifying the data.
An ADT does not specify:

» How the data should be organised in memory (though the
ADT may suggest to us a particular structure).

» Which algorithms should be used to implement the
methods.

An ADT is what, not how.

Data Structures

how ...
A data structure realising an ADT consists of:

» collections of variables for storing the data;
» algorithms for the methods of the ADT.
In terms of JAVA:

ADT <« JAVA interface
data structure <+ JAVA class

The data structure (with algorithms) has a large influence on
the algorithmic efficiency of the implementation.

Stacks

A Stack is an ADT with the following methods:
» push(e): Insert element e.

» pop(): Remove the most recently inserted element and
return it;

» an error occurs if the stack is empty.

» isEmpty(): Returns TRUE if the stack is empty, FALSE
otherwise.

» Last-In First-Out (LIFO).

Can implement Stack with worst-case time O(1) for all
methods, with either an array or a linked list.

The reason we do so well? ... Very simple operations.

Applications of Stacks

» Executing Recursive programs.
» Depth-First Search on a graph (coming later).
» Evaluating (postfix) Arithmetic expressions.

Algorithm postfixEval(s . .. sk)

1. fori+«+ 1to kdo
2 if (s; is a number) then push(s;)

3 else (s; must be a (binary) operator)
4, e2 + pop();

5. el < pop();

6 a < el s;ez;

7. push(a)

8. return pop()

» Example: 6 4 - 3 « 10 + 11 13 - &

Queues

A Queue is an ADT with the following methods:
» enqueue(e): Insert element e.

» dequeue(): Remove the element inserted the longest time
ago and return it;

» an error occurs if the queue is empty.
» isEmpty(): Return TRUE if the queue is empty and FALSE
otherwise.

» First-In First-Out (FIFO).

Queue can easily be realised by a data structures based either
on arrays or on linked lists.
Again, all methods run in O(1) time (simplicity).

Sequential Data

Mathematical model of the data: a linear sequence of
elements.

» A sequence has well-defined first and /ast elements.

» Every element of a sequence except the last has a unique
successor.

» Every element of a sequence except the first has a unique
predecessor.

» The rank of an element e in a sequence S is the number of
elements before e in S.

Stacks and Queues are sequential.

Arrays and Linked Lists abstractly

An array, a singly linked list, and a doubly linked list storing
objects 01, 02, 03, 04, 05:

el]
EIEEI = B S B) (e

[e o] Ao [A0 [or [AT 0 [or [A7 Yo [os] o]

Arrays and Linked Lists in Memory

An array, a singly linked list, and a doubly linked list storing
objects 01, 02, 03, 04, 05:

[[Pefofade] | [[[T 1 [[]]

N
EEOEEONEOEEEDOEEL
AN

Va—
[lofe] [ofolelelels] [Slwlolb]]e]

Vectors

A Vector is an ADT for storing a sequence S of n elements that
supports the following methods:

» elemAtRank(r): Return the element of rank r; an error
occursifr<Qorr>n—1.

» replaceAtRank(r, e): Replace the element of rank r with e;
an error occursif r <Oorr>n—1.
» insertAtRank(r, e): Insert a new element e at rank r (this

increases the rank of all following elements by 1); an error
occursif r<0orr > n.

» removeAtRank(r): Remove the element of rank r (this
reduces the rank of all following elements by 1); an error
occursifr<Qorr>n—1.

» size(): Return n, the number of elements in the sequence.

Array Based Data Structure for Vector

Variables
» Array A (storing the elements)
» Integer n = number of elements in the sequence

Array Based Data Structure for Vector

Methods

Algorithm elemAtRank(r)
1. return A[r]

Algorithm replaceAtRank(r, e)
1. Alrlj«<e

Algorithm insertAtRank(r, e)
1. fori<+ ndowntor+ 1 do
2. Ali] « Ali — 1]
3. Ar]«+e
4. n<—n+1

insertAtRank assumes the array is big enough!
See later ...

Array Based Data Structure for Vector

Algorithm removeAtRank(r)

1. fori<~rton—2do
2. Alil «+ A[i +1]
3. n«—n-1

Algorithm size()
1. returnn

Running times (for Array based implementation)
©(1) for elemAtRank, replaceAtRank, size
©(n) for insertAtRank, removeAtRank (worst-case)

Abstract Lists

List is a sequential ADT with the following methods:

>

>

>

>

>

element(p): Return the element at position p.
first(): Return position of the first element; error if empty.

isEmpty(): Return TRUE if the list is empty, FALSE
otherwise.

next(p): Return the position of the element following the
one at position p; an error occurs if p is the last position.

isLast(p): Return TRUE if pis last in list, FALSE otherwise.
replace(p, e): Replace the element at position p with e.
insertFirst(e): Insert e as the first element of the list.
insertAfter(p, e): Insert element e after position p.
remove(p): Remove the element at position p.

Plus: last(), previous(p), isFirst(p), insertLast(e), and
insertBefore(p, e)

Realising List with Doubly Linked Lists

Variables

» Positions of a List are realised by nodes having fields
element, previous, next.

» Listis accessed through node-variables first and /ast.
Method (example)

Algorithm insertAfter(p, e)

1. create a new node q
g.element + e
q.next < p.next
g.previous < p
p.next < q
g.next.previous < q

ook

Realising List using Doubly Linked Lists

Method (example)

Algorithm remove(p)
1. p.previous.next < p.next
2. p.next.previous «+ p.previous
3. delete p

Running Times (for Doubly Linked implementation).
All operations take ©(1) time ...

ONLY BECAUSE of pointer representation (p is a direct link)

O(1) bounds partly because we have simple methods.

search would be inefficient in this implementation of List.

Dynamic Arrays

What if we try to insert too many elements into a fixed-size
array?

The solution is a Dynamic Array.

Here we implement a dynamic VeryBasicSequence
(essentially a queue with no dequeue()).

VeryBasicSequence

VeryBasicSequence is an ADT for sequences with the following
methods:

» elemAtRank(r): Return the element of S with rank r; an
error occurs if r <Oorr>n—1.

» replaceAtRank(r, e): Replace the element of rank r with e;
an erroroccursifr<Qorr>n-—1.

» insertLast(e): Append element e to the sequence.
» size(): Return n, the number of elements in the sequence.

Dynamic Insertion

Algorithm insertLast(e)
1. if n < A.length then

2 Aln] «+ e
3. else > n = A.length, i.e., the array is full
4 N < 2(A.length + 1)
5 Create new array A’ of length N
6. fori=0ton—1do
7 Ali] « Ali]
8 Aln] « e
9 A A
10. n«<n+1

Analysis of running-time

Worst-case analysis

elemAtRank, replaceAtRank, and size have ©(1) running-time.
insertLast has ©(n) worst-case running time for an array of
length n (instead of ©(1))

In Amortised analysis we consider the total running time of a
sequence of operations.

Theorem
Inserting m elements into an initially empty VeryBasicSequence
using the method insertLast takes ©(m) time.

20

1

Amortised Analysis

» minsertions /(1),...

» Expensive insertions: /(iy),. ..,

i :1,i2:3,f3:7,...,i/‘+1 :2ij—|-1,...

, I(m). Most are cheap (cost: ©(1)),
some are expensive (cost: ©(j)).

=2t <j <2
=(<lIg(m)+1.

V4
> o) +
j=1

Zo

IN

IN

/(ig),1§i1 <...

o(éij)+0m

j=1
0 2/) +O(m)

O
O

(%
('9<"’ 2) + O(m)
4m—2) + O(m)
m).

@)

(
(

<ip<m.

21

Reading

» Java Collections Framework: Stack, Queue,
Vector. (Also, Java’s ArrayList behaves like a dynamic
array).

» Lecture notes 3 (handed out).

» If you have [GT]:
Chapters on “Stacks, Queues and Recursion” and
“Vectors, Lists and Sequences”.

» If you have [CLRS]:
“Elementary data Structures” chapter (except trees).

22/1

