Inf 2B: Sequential Data Structures
Lecture 3 of ADS thread

Kyriakos Kalorkoti

School of Informatics
University of Edinburgh
Abstract Data Types (ADTs)

The “Specification Language" for Data Structures. An ADT consists of:

▶ a mathematical model of the data;
▶ methods for accessing and modifying the data.

An ADT does not specify:

▶ How the data should be organised in memory (though the ADT may suggest to us a particular structure).
▶ Which algorithms should be used to implement the methods.

An ADT is what, not how.
A data structure realising an ADT consists of:

- collections of variables for storing the data;
- algorithms for the methods of the ADT.

In terms of JAVA:

\[\text{ADT} \leftrightarrow \text{JAVA interface} \]
\[\text{data structure} \leftrightarrow \text{JAVA class} \]

The data structure (with algorithms) has a large influence on the algorithmic efficiency of the implementation.
Stacks

A Stack is an ADT with the following methods:

- **push(e)**: Insert element e.
- **pop()**: Remove the *most recently inserted* element and return it;
 - an error occurs if the stack is empty.
- **isEmpty()**: Returns TRUE if the stack is empty, FALSE otherwise.
- Last-In First-Out (LIFO).

Can implement Stack with worst-case time $O(1)$ for all methods, with either an array or a linked list.

The reason we do so well? ... Very simple operations.
Applications of *Stacks*

- Executing Recursive programs.
- **Depth-First Search** on a graph (coming later).
- Evaluating (postfix) Arithmetic expressions.

Algorithm postfixEval($s_1 \ldots s_k$)

1. **for** $i \leftarrow 1$ **to** k **do**
2. **if** (s_i is a number) **then** push(s_i)
3. **else** (s_i must be a (binary) operator)
4. $e_2 \leftarrow$ pop();
5. $e_1 \leftarrow$ pop();
6. $a \leftarrow e_1 \ s_i \ e_2$;
7. push(a)
8. **return** pop()

- Example: $6 \ 4 \ - \ 3 \ * \ 10 \ + \ 11 \ 13 \ - \ *$
Queues

A *Queue* is an ADT with the following methods:

- `enqueue(e)`: Insert element `e`.
- `dequeue()`: Remove the element *inserted the longest time ago* and return it;
 - an error occurs if the queue is empty.
- `isEmpty()`: Return `TRUE` if the queue is empty and `FALSE` otherwise.
- First-In First-Out (*FIFO*).

Queue can easily be realised by a data structures based *either* on arrays *or* on linked lists.

Again, all methods run in $O(1)$ time (simplicity).
Sequential Data

Mathematical model of the data: a linear sequence of elements.

- A sequence has well-defined *first* and *last* elements.
- Every element of a sequence except the last has a unique *successor*.
- Every element of a sequence except the first has a unique *predecessor*.
- The *rank* of an element e in a sequence S is the number of elements before e in S.

Stacks and Queues are sequential.
Arrays and Linked Lists abstractly

An array, a singly linked list, and a doubly linked list storing objects o_1, o_2, o_3, o_4, o_5:

\[
\begin{array}{cccc}
 o_1 & o_2 & o_3 & o_4 & o_5 \\
\end{array}
\]

\[
\begin{array}{cccc}
 o_1 \rightarrow o_2 \rightarrow o_3 \rightarrow o_4 \rightarrow o_5 \\
\end{array}
\]

\[
\begin{array}{cccc}
 o_1 \leftrightarrow o_2 \leftrightarrow o_3 \leftrightarrow o_4 \leftrightarrow o_5 \\
\end{array}
\]
Arrays and Linked Lists in Memory

An array, a singly linked list, and a doubly linked list storing objects o_1, o_2, o_3, o_4, o_5:
A *Vector* is an ADT for storing a sequence S of n elements that supports the following methods:

- **elemAtRank**(r): Return the element of rank r; an error occurs if $r < 0$ or $r > n - 1$.
- **replaceAtRank**(r, e): Replace the element of rank r with e; an error occurs if $r < 0$ or $r > n - 1$.
- **insertAtRank**(r, e): Insert a new element e at rank r (this increases the rank of all following elements by 1); an error occurs if $r < 0$ or $r > n$.
- **removeAtRank**(r): Remove the element of rank r (this reduces the rank of all following elements by 1); an error occurs if $r < 0$ or $r > n - 1$.
- **size()**: Return n, the number of elements in the sequence.
Array Based Data Structure for *Vector*

Variables
- Array A (storing the elements)
- Integer $n = \text{number of elements in the sequence}$
Array Based Data Structure for Vector

Methods

Algorithm `elemAtRank(r)`
1. return `A[r]`

Algorithm `replaceAtRank(r, e)`
1. `A[r] ← e`

Algorithm `insertAtRank(r, e)`
1. for `i ← n downto r + 1` do
3. `A[r] ← e`
4. `n ← n + 1`

`insertAtRank` assumes the array is big enough! See later . . .
Array Based Data Structure for Vector

Algorithm `removeAtRank(r)`

1. for $i \leftarrow r$ to $n - 2$ do
2. $A[i] \leftarrow A[i + 1]$
3. $n \leftarrow n - 1$

Algorithm `size()`

1. return n

Running times (for Array based implementation)

$\Theta(1)$ for `elemAtRank`, `replaceAtRank`, `size`

$\Theta(n)$ for `insertAtRank`, `removeAtRank` (worst-case)
Abstract Lists

A list is a sequential ADT with the following methods:

- **element(p):** Return the element at position \(p \).
- **first():** Return position of the first element; error if empty.
- **isEmpty():** Return `TRUE` if the list is empty, `FALSE` otherwise.
- **next(p):** Return the position of the element following the one at position \(p \); an error occurs if \(p \) is the last position.
- **isLast(p):** Return `TRUE` if \(p \) is last in list, `FALSE` otherwise.
- **replace(p, e):** Replace the element at position \(p \) with \(e \).
- **insertFirst(e):** Insert \(e \) as the first element of the list.
- **insertAfter(p, e):** Insert element \(e \) after position \(p \).
- **remove(p):** Remove the element at position \(p \).

Plus: `last()`, `previous(p)`, `isFirst(p)`, `insertLast(e)`, and `insertBefore(p, e)`
Realising *List* with Doubly Linked Lists

Variables

- Positions of a *List* are realised by *nodes* having fields *element*, *previous*, *next*.
- List is accessed through node-variables *first* and *last*.

Method (example)

Algorithm `insertAfter(p, e)`

1. create a new node `q`
2. `q.element ← e`
3. `q.next ← p.next`
4. `q.previous ← p`
5. `p.next ← q`
6. `q.next.previous ← q`
Realising *List* using Doubly Linked Lists

Method (example)

Algorithm `remove(p)`

1. `p.previous.next ← p.next`
2. `p.next.previous ← p.previous`
3. `delete p`

Running Times (for Doubly Linked implementation).
All operations take \(\Theta(1)\) time ...

ONLY BECAUSE of pointer representation (\(p\) is a direct link)

\(O(1)\) bounds partly because we have simple methods.

search would be inefficient in this implementation of *List*.
Dynamic Arrays

What if we try to insert too many elements into a fixed-size array?

The solution is a Dynamic Array.

Here we implement a dynamic VeryBasicSequence (essentially a queue with no dequeue()).
VeryBasicSequence is an ADT for sequences with the following methods:

- `elemAtRank(r)`: Return the element of S with rank \(r \); an error occurs if \(r < 0 \) or \(r > n - 1 \).
- `replaceAtRank(r, e)`: Replace the element of rank \(r \) with \(e \); an error occurs if \(r < 0 \) or \(r > n - 1 \).
- `insertLast(e)`: Append element \(e \) to the sequence.
- `size()`: Return \(n \), the number of elements in the sequence.
Dynamic Insertion

Algorithm `insertLast(e)`

1. if \(n < A.length \) then
2. \(A[n] \leftarrow e \)
3. else \(n = A.length \), i.e., the array is full
4. \(N \leftarrow 2(A.length + 1) \)
5. Create new array \(A' \) of length \(N \)
6. for \(i = 0 \) to \(n - 1 \) do
7. \(A'[i] \leftarrow A[i] \)
8. \(A'[n] \leftarrow e \)
9. \(A \leftarrow A' \)
10. \(n \leftarrow n + 1 \)
Analysis of running-time

Worst-case analysis
elemAtRank, replaceAtRank, and size have $\Theta(1)$ running-time. insertLast has $\Theta(n)$ worst-case running time for an array of length n (instead of $\Theta(1)$)

In Amortised analysis we consider the total running time of a sequence of operations.

Theorem
Inserting m elements into an initially empty VeryBasicSequence using the method insertLast takes $\Theta(m)$ time.
Amortised Analysis

- \(m \) insertions \(I(1), \ldots, I(m) \). Most are cheap (cost: \(\Theta(1) \)), some are expensive (cost: \(\Theta(j) \)).

- Expensive insertions: \(I(i_1), \ldots, I(i_\ell) \), \(1 \leq i_1 < \ldots < i_\ell \leq m \).

 \[
i_1 = 1, \ i_2 = 3, \ i_3 = 7, \ldots, \ i_{j+1} = 2i_j + 1, \ldots
 \]

 \[
 \Rightarrow 2^{r-1} \leq i_r < 2^r
 \]

 \[
 \Rightarrow \ell \leq \lg(m) + 1.
 \]

\[
\sum_{j=1}^{\ell} O(i_j) + \sum_{1 \leq i \leq m, \ i \neq i_1, \ldots, i_\ell} O(1) \leq O\left(\sum_{j=1}^{\ell} i_j\right) + O(m)
\]

\[
\leq O\left(\sum_{j=1}^{\ell} 2^j\right) + O(m)
\]

\[
= O\left(2^{\lg(m)+2} - 2\right) + O(m)
\]

\[
= O(4m - 2) + O(m)
\]

\[
= O(m).
\]
Reading

- Java Collections Framework: Stack, Queue, Vector. (Also, Java’s ArrayList behaves like a dynamic array).
- Lecture notes 3 (handed out).
- If you have [GT]: Chapters on “Stacks, Queues and Recursion” and “Vectors, Lists and Sequences”.
- If you have [CLRS]: “Elementary data Structures” chapter (except trees).