Inf 2B: Asymptotic notation and Algorithms
Lecture 2B of ADS thread

Kyriakos Kalorkoti

School of Informatics
University of Edinburgh
Reminder of Asymptotic Notation

Let $f, g : \mathbb{N} \to \mathbb{R}$ be functions. We say that:

- f is $O(g)$ if there is some $n_0 \in \mathbb{N}$ and some $c > 0 \in \mathbb{R}$ such that for all $n \geq n_0$ we have

 $$0 \leq f(n) \leq c g(n).$$

- f is $\Omega(g)$ if there is an $n_0 \in \mathbb{N}$ and $c > 0$ in \mathbb{R} such that for all $n \geq n_0$ we have

 $$f(n) \geq c g(n) \geq 0.$$

- f is $\Theta(g)$, or f has the same asymptotic growth rate as g, if f is $O(g)$ and $\Omega(g)$.
Worst-case (and best-case) running-time

We almost always work with Worst-case running time in Inf2B:

Definition
The *(worst-case) running time* of an algorithm A is the function $T_A : \mathbb{N} \rightarrow \mathbb{N}$ where $T_A(n)$ is the maximum number of computation steps performed by A on an input of size n.

Definition
The *(best-case) running time* of an algorithm A is the function $B_A : \mathbb{N} \rightarrow \mathbb{N}$ where $B_A(n)$ is the minimum number of computation steps performed by A on an input of size n.

We only use Best-case for explanatory purposes.
Asymptotic notation for Running-time

How do we apply O, Ω, Θ to analyse the running-time of an algorithm A?

Possible approach:

▶ We analyse A to obtain the worst-case running time function $T_A(n)$.

▶ We then go on to derive upper and lower bounds on (the growth rate of) $T_A(n)$, in terms of $O(\cdot)$, $\Omega(\cdot)$.

In fact we use asymptotic notation with the analysis, much simpler (no need to give names to constants, takes care of low level detail that isn’t part of the big picture).

▶ We aim to have matching $O(\cdot)$, $\Omega(\cdot)$ bounds hence have a $\Theta(\cdot)$ bound.

▶ Not always possible, even for apparently simple algorithms.
Example

algA(A, r, s)
1. if $r < s$ then
2. for $i \leftarrow r$ to s do
3. for $j \leftarrow i$ to s do
4. $m \leftarrow \lceil \frac{i+j}{2} \rceil$
5. algB(A, i, m - 1)
6. algB(A, m, j)
7. $m \leftarrow \lceil \frac{r+s}{2} \rceil$
8. algA(A, r, m - 1)
9. algA(A, m, s)

algB(A, r, s)
1. if $A[r] < A[s]$ then
2. swap $A[r]$ with $A[s]$
3. if $r < s - r$ then
4. algA(A, r, s - r)
linSearch

Input: Integer array A, integer k being searched.
Output: The least index i such that $A[i] = k$.

Algorithm linSearch(A, k)

1. for $i \leftarrow 0$ to $A.length - 1$ do
2. if $A[i] = k$ then
3. return i
4. return -1

(Lecture Note 1) Worst-case running time $T_{\text{linSearch}}(n)$ satisfies

$$(c_1 + c_2)n + \min\{c_3, c_1 + c_4\} \leq T_{\text{linSearch}}(n) \leq (c_1 + c_2)n + \max\{c_3, c_1 + c_4\}.$$

Best-case running time satisfies $B_{\text{linSearch}}(n) = c_1 + c_2 + c_3$.
Picture of $T_{\text{linSearch}}(n), B_{\text{linSearch}}(n)$

$T(n) = (c_1 + c_2)n + ...$

$B(n) = c_1 + c_2 + c_3$
\(T_{\text{linSearch}}(n) = O(n) \)

Proof.
From Lecture Note 1 we have

\[
T_{\text{linSearch}}(n) \leq (c_1 + c_2) \cdot n + \max \{ c_3, (c_1 + c_4) \}.
\]

Take \(n_0 = \max\{ c_3, (c_1 + c_4) \} \), \(c = c_1 + c_2 + 1 \).

Then for every \(n \geq n_0 \), we have

\[
T_{\text{linSearch}}(n) \leq (c_1 + c_2)n + n_0
\leq (c_1 + c_2 + 1)n = cn.
\]

Hence \(T_{\text{linSearch}}(n) = O(n) \).
\[T_{\text{linSearch}}(n) = \Omega(n) \]

We know \(T_{\text{linSearch}}(n) = O(n) \).

Also true: \(T_{\text{linSearch}}(n) = O(n \lg(n)) \), \(T_{\text{linSearch}}(n) = O(n^2) \).

\[\text{Is } T_{\text{linSearch}}(n) = O(n) \text{ the best we can do?} \]

\YES, because ...\]

\[T_{\text{linSearch}}(n) = \Omega(n). \]

Proof.

\[T_{\text{linSearch}}(n) \geq (c_1 + c_2)n, \text{ because all } c_i \text{ are positive.} \]

Take \(n_0 = 1 \) and \(c = c_1 + c_2 \) in defn of \(\Omega \).

\[T_{\text{linSearch}}(n) = \Theta(n). \]
Misconceptions/Myths about O and Ω

Misconception 1

If we can show $T_A(n) = O(f(n))$ for some function $f : \mathbb{N} \to \mathbb{R}$, then the running time of A on inputs of size n is bounded by $f(n)$ for sufficiently large n.

FALSE: Only guaranteed an upper bound of $cf(n)$, for some constant $c > 0$.

Example: Consider linSearch. We could have shown $T_{\text{linSearch}} = O(\frac{1}{2}(c_1 + c_2)n)$ (or $O(\alpha n)$, for any constant $\alpha > 0$) *exactly* as we showed $T_{\text{linSearch}}(n) = O(n)$ *but* . . .

the worst-case for linSearch is greater than $\frac{1}{2}(c_1 + c_2)n$.
Misconceptions/Myths about O and Ω

MISCONCEPTION 2

Because $T_A(n) = O(f(n))$ implies a $c f(n)$ upper bound on the running-time of A for *all* inputs of size n, then $T_A(n) = \Omega(g(n))$ implies a similar lower bound on the running-time of A for *all* inputs of size n.

FALSE: If $T_A(n) = \Omega(g(n))$ for some $g : \mathbb{N} \rightarrow \mathbb{R}$, then there is some constant $c' > 0$ such that $T_A(n) \geq c' g(n)$ for all sufficiently large n.

But A can be much faster than $T_A(n)$ on other inputs of length n that are not worst-case! No lower bound on *general* inputs of size n. linSearch graph is an example.
Insertion Sort

Input: An integer array A

Output: Array A sorted in non-decreasing order

Algorithm `insertionSort(A)`

1. **for** $j \leftarrow 1$ **to** $A.length - 1$ **do**
2. \hspace{1cm} $a \leftarrow A[j]$
3. \hspace{1cm} $i \leftarrow j - 1$
4. **while** $i \geq 0$ **and** $A[i] > a$ **do**
5. \hspace{2cm} $A[i + 1] \leftarrow A[i]$
6. \hspace{2cm} $i \leftarrow i - 1$
7. \hspace{1cm} $A[i + 1] \leftarrow a$
Example: Insertion Sort

Input:

```
3 6 5 1 4
```

\[j=1\]

```
3 6 5 1 4
```

\[j=2\]

```
3 6 5 6 1 4
```

\[j=3\]

```
3 1 6 5 6 1 4
```

\[j=4\]

```
1 3 5 4 6 5 4 6
```
Big-O for \(T_{\text{insertionSort}}(n) \)

Algorithm `insertionSort(A)`

1. for \(j \leftarrow 1 \) to `A.length - 1` do
2. \(a \leftarrow A[j] \)
3. \(i \leftarrow j - 1 \)
4. while \(i \geq 0 \) and \(A[i] > a \) do
5. \(A[i + 1] \leftarrow A[i] \)
6. \(i \leftarrow i - 1 \)
7. \(A[i + 1] \leftarrow a \)

Line 1 \(O(1) \) time, executed \(A.length - 1 = n - 1 \) times.

Lines 2,3,7 \(O(1) \) time each, executed \(n - 1 \) times.

Lines 4,5,6 \(O(1) \)-time, executed together as for-loop. No. of executions depends on for-test, \(j \).

For fixed \(j \), for-loop at 4. takes at most \(j \) iterations.
Algorithm `insertionSort(A)`

1. for $j \leftarrow 1$ to $A.length - 1$ do
2. $a \leftarrow A[j]$
3. $i \leftarrow j - 1$
4. while $i \geq 0$ and $A[i] > a$ do
5. $A[i + 1] \leftarrow A[i]$
6. $i \leftarrow i - 1$
7. $A[i + 1] \leftarrow a$

For a fixed j, lines 2-7 take at most

\[
O(1) + O(1) + O(1) + O(j) + O(j) + O(j) + O(1) \\
= O(1) + O(j) \\
= O(1) + O(n) \\
= O(n).
\]

There are $n - 1$ different j-values. Hence

\[
T_{insertionSort}(n) = (n - 1)O(n) = O(n)O(n) = O(n^2).
\]
$T_{\text{insertionSort}}(n) = \Omega(n^2)$

Harder than $O(n^2)$ bound.
Focus on a **BAD** instance of size n:
Take input instance $\langle n, n - 1, n - 2, \ldots, 2, 1 \rangle$.

- For every $j = 1 \ldots, n - 1$, insertionSort uses j executions of line 5 to insert $A[j]$.

Then

$$T_{\text{insertionSort}}(n) \geq \sum_{j=1}^{n-1} cj = c \sum_{j=1}^{n-1} j = c \frac{n(n - 1)}{2}.$$

So $T_{\text{insertionSort}}(n) = \Omega(n^2)$ and $T_{\text{insertionSort}}(n) = \Theta(n^2)$.
“Typical” asymptotic running times

- $\Theta(lg \ n)$ (logarithmic),
- $\Theta(n)$ (linear),
- $\Theta(n \ lg \ n)$ (n-log-n),
- $\Theta(n^2)$ (quadratic),
- $\Theta(n^3)$ (cubic),
- $\Theta(2^n)$ (exponential).
Further Reading

- Lecture notes 2 from last week.
- If you have Goodrich & Tamassia [GT]:
 All of the chapter on “Analysis Tools” (especially the “Seven functions” and “Analysis of Algorithms” sections).
- If you have [CLRS]:
 Read chapter 3 on “Growth of Functions.”