
1 / 14

Inf 2B: Asymptotic notation
Lecture 2 of ADS thread

Kyriakos Kalorkoti

School of Informatics
University of Edinburgh



2 / 14

Linear Search in Pseudocode
Input: Integer array A, integer k being searched.
Output: The least index i such that A[i] = k ; otherwise −1.

Algorithm linSearch(A, k)

1. for i ← 0 to A.length − 1 do
2. if A[i] = k then
3. return i
4. return −1

Assume each line takes constant time to execute once.
Let ci be the time for line i . Then

(c1 + c2)n + min{c3, c1 + c4} ≤ TlinSearch(n)

≤ (c1 + c2)n + max{c3, c1 + c4}.



3 / 14

The Big-O Notation

Definition
Let f ,g : N→ R be functions. We say that f is O(g) if there is
some n0 ∈ N and some c > 0 from R such that for all n ≥ n0 we
have

0 ≤ f (n) ≤ c g(n).

In other words:

O(g) =
{

f : N→ R | there is an n0 ∈ N and c > 0 in R such
that 0 ≤ f (n) ≤ cg(n), for all n ≥ n0.

}
Then “f is O(g)” means f ∈ O(g).
Informally, we say “for sufficiently large n” instead of
“there is some n0 ∈ N such that for all n ≥ n0 . . . ”.



4 / 14

Intention
“f is O(g)” tells us that the growth rate of f is no worse than that
of g. Could be better.

I c allows us to adjust for constants: n2 obviously has same
growth rate as 3n2, 20n2, 100n2. . .

I consider n→ an then

n2 →a2 · n2

3n2 →a2 · 3n2

20n2 →a2 · 20n2

...

I Positivity condition (0 ≤ f (n) ≤ · · · ) required to ensure
some useful properties, always satisfied by runtimes!

I n0 allows a settling in period of atypical behaviour.

I O allows us to concentrate on the big picture rather than
details (many being implementation dependent ).



5 / 14

Notational Convention

Write
f = O(g),

instead of
f ∈ O(g).

I Makes it convenient to have chains reasoning with
inequalities etc.

I Notation here is from left to right. f = O(g) does not mean
that O(g) = f !

I f = f1 + O(g) = f2 + O(g) does not imply that f1 = f2.
I Seems strange but easy to get used to it and very useful.



6 / 14

Examples of O
1. 3n3 = O(n3).

Need c and n0 so that 3n3 ≤ cn3 for all n ≥ n0.
Take c = 3, n0 = 0.

2. 3n3 + 8 = O(n3).
For a constant c > 0 we have

3n3 + 8 ≤ cn3 ⇐⇒ 3 +
8
n3 ≤ c provided n > 0.

As n increases 8/n3 decreases. Thus

3 +
8
n3 ≤ 11 for all n > 0.

So we take c = 11, n0 = 1.
We can also take c = 4, n0 = 2 or c = 3 + 8/27, n0 = 3
etc.



7 / 14

More Examples of O
3. lg(n) = O(n)

Intuitively: lg(n) < n for all n ≥ 1.
Need a proof. Well

lg(n) < n⇐⇒ n < 2n, for all n > 0.

Use induction on n to prove rhs.
I Base case n = 1 is clearly true.
I For induction step assume claim holds for n. Then

2n+1 = 2 · 2n > 2n, by induction hypothesis.

To complete the proof just need to show that 2n ≥ n + 1.
Now

2n ≥ n + 1⇐⇒ n ≥ 1,

and we have finished.
So we take c = 1 and n0 = 1.



8 / 14

More Examples of O
4. 8n2 + 10n lg(n) + 100n + 10000 = O(n2).

We have

8n2+10n lg(n) + 100n + 10000

< 8n2 + 10n · n + 100n + 10000, for all n > 0

≤ 8n2 + 10n2 + 100n2 + 10000n2

= (8 + 10 + 100 + 10000)n2

= 10118n2.

Thus we can take n0 = 1 and c = 10118.
I Value for c seems rather large.
I Any c > 8 will do, the closer c is to 8 the larger n0 has to be.
I For big-O notation, no point at all in expending more effort

just to reduce some constant.
5. 2100 = O(1).

Take n0 = 0 and c = 2100.



9 / 14

“Laws” of Big-O

Theorem: Let f1, f2,g1,g2 : N→ R be functions. Then:
1. For any constant a > 0 in R: f1 = O(g1) =⇒ af1 ∈ O(g1).

2. f1 = O(g1) and f2 = O(g2) =⇒ f1 + f2 = O(g1 + g2).

3. f1 = O(g1) and f2 = O(g2) =⇒ f1f2 = O(g1g2).

4. f1 = O(g1) and g1 = O(g2) =⇒ f1 = O(g2).

5. For any d ∈ N: if f1 is polynomial of degree d with positive
leading coefficient then f1 = O(nd ).

6. For any constants a > 0 and b > 1 in R: na = O(bn).

7. For any constant a > 0 in R: lg(na) = O(lg(n)).

8. For any constants a > 0 and b > 0 in R: lga(n) = O(nb).



10 / 14

Example (using Laws for O)

871n3 + 13n2 lg5(n) + 18n + 566 = O(n3).

871n3 + 13n2 lg5(n) + 18n + 566

= 871n3 + 13n2O(n) + 18n + 566 by (8)

= 871n3 + O(n3) + 18n + 566 by (3)

= 871n3 + 18n + 566 + O(n3)

= O(n3) + O(n3) by (5)

= O(n3) by (2) & (1)



11 / 14

Big-ΩΩΩ and Big-ΘΘΘ

Definition
Let f ,g : N→ R be functions.

1. We say that f is Ω(g) if there is an n0 ∈ N and c > 0 in R
such that for all n ≥ n0 we have

f (n) ≥ c g(n) ≥ 0.

2. We say that f is Θ(g), or f has the same asymptotic growth
rate as g, if f is O(g) and Ω(g).

I Have corresponding ‘laws of Ω’ (see notes).
I f = Ω(g) ⇐⇒ g = O(f ). [Prove this.]



12 / 14

Examples of f = Ω(g)

1. Let f (n) = 3n3 and g(n) = n3.
(combining this with Ex 1. for O gives 3n3 = Θ(n3))

Let n0 = 0 and c = 1. Then for all n ≥ n0,
f (n) = 3n3 ≥ cg(n) = g(n).

2. Let f (n) = lg(n) and g(n) = lg(n2).

Well
lg(n2) = 2 log(n).

So take c = 1/2 and n0 = 1. Then for every n ≥ n0 we
have,

f (n) = lg(n) =
1
2

2 lg(n) =
1
2

lg(n2) =
1
2

g(n).



13 / 14

Quick quiz: True or False ?

√
n3 = O(n2)?

True.
√

n3 = n3/2 ≤ n2.

2blg nc = O(n)?

True. 2blg nc ≤ 2lg n = n.

2blg nc = Ω(n)?

True: Let n ≥ 2. Then blg nc ≥ (lg n)− 1 ≥ 0. Hence
2blg nc ≥ 2(lg n)−1 = n/2. So take n0 = 2, c = 1/2.

n lg n = Θ(n2)?

False: We do have n lg n = O(n2) but n lg n is not Ω(n2).



14 / 14

Further Reading

I Lecture notes 2 (handed out).
I If you have Goodrich & Tamassia [GT]:

All of the chapter on “Analysis Tools” (especially the
“Seven functions” and “Analysis of Algorithms” sections).
NB: the title of the book is as given in slides of lecture 1,
not as in note 1.

I If you have [CLRS]:
Read chapter 3 on “Growth of Functions”.

I Wikipedia has a page about asymptotic notation:
en.wikipedia.org/wiki/Asymptotic_notation


