
Inf2B Algorithms and Data Structures Note 12 Informatics 2B (KK1.3)

Ranking Queries on the WWW

In the previous lecture we discussed the task of building an index for a large set
of documents. This process is often called Inversion in the literature, because of
the fact that we take a set of documents (this set can be thought of as a function
from Documents to sets of Index terms), and construct an Index (which is a
function from Index terms to sets of Documents). This is more-or-less inverting
the original “function” corresponding to the set of documents.

The setting for the previous lecture was the large-scale environment, where
there are very many documents to process. Therefore this setting includes
the problem of Indexing the WWW (where documents are webpages), where the
“scale” is billions of documents. The two algorithms that we presented for Index-
ing are not directly applicable to indexing the web, because they are sequential
stand-alone algorithms that are executed on a single computer (even if we do
use the hard disk for the second algorithm). Given the scale of the WWW, search
engines such as GoogleTM must maintain large clusters of connected machines
which individually perform indexing on their own set of webpages. The Index-
ing task must be synchronized across all the machines in the cluster, so that
we have a (distributed) index for the entire web. This issue of how the indexing
task is synchronized across the GoogleTM servers involves many concerns, some
of which are hardware-related, some algorithmic, some IR-related (IR means In-
formation Retrieval) etc. These cannot be discussed in any significant way in
the time available so we leave them. If you are interested in learning something
about how a search engine system fits together, have a look at the Brin and Page
paper, “An Anatomy . . . ” (referenced in Further Reading).

In this lecture we turn our attention to a topic related to Indexing: the topic
of ranking. Suppose we have constructed an Index for a set of webpages. Now
suppose we do a search for “Pease porridge”. The index will contain very many
webpages that are relevant for this term. How do we rank them in order of
importance? Certainly we don’t want all the pages. For example, a search using
GoogleTM with the term “Pease porridge”, keeping the quotes to indicate that the
words must be adjacent in webpages, the estimate on the first page is 42900
pages (search carried out on 30 December 2008).

One approach to ranking webpages for a particular query might be to count
the number of occurrences of the query terms in the webpages (our algorithms
for Indexing from Lecture Note 11 actually compute this information and store
it in the Index). In practice, this is a bad approach as very informative web-
pages may contain very few or even no occurrences of the query term(s). For
example, if we search for “University of Edinburgh”, there are many webpages
that have far more more occurrences of this phrase than the university webpage
at http://www.ed.ac.uk. All the same, the university webpage is first in the
ranking (as it should be).

Instead, most ranking systems take a very different approach to the ranking
of webpages, by using the link structure of the WWW to determine a ranking.
The idea is that by linking to another page, the source page confers authority on

1

Inf2B Algorithms and Data Structures Note 12 Informatics 2B (KK1.3)

the destination page. This is the idea behind PageRankTM and other models of
ranking such as Kleinberg’s Hub-Authority model (see Further Reading).

12.1 Basic PageRank

TM

Regardless of the model of ranking we use, the ranking of webpages will vary
greatly depending with the query. Therefore for this lecture we mostly assume
that we are working with a set of webpages relating to one particular query. We
could think of this as being the list of pages associated with the query term in
the Inverted Index for the query. In practice there will be extra pages in our set
of documents, since some relevant webpages may not contain any occurrences
of the query term. We sometimes see evidence of this in GoogleTM when we see
the following message in a cached copy of a page:

These terms only appear in links pointing to this page: ...

Keeping in mind the principle that a link to a webpage confers authority on that
webpage, we have the following model of a ranking system. We consider the web
(or the part of it pertaining to this particular query) as a directed graph, where
the set of vertices V = [N] (where [N] is shorthand for {1, 2, . . . , N}) is the set of
webpages (pertaining to that query) and the directed edges E ✓ [N] ⇥ [N] of the
graph are the links of the webgraph. Let G = (V,E) denote our webgraph. Let
M = |E|, the number of edges. Recall the following definitions (which apply to
any graph):
Definition 12.1. Let u 2 V be a vertex in the webgraph.

• The in-degree in(u) of u is the number of incoming edges to u (number of
links from other pages that point to u). The set of in-edges to u is written as
In(u).

• The out-degree out(u) of u is the number of outgoing edges from u (links
that u has to other pages). The set of out-edges from u is written as Out(u).

Definition 12.2. The adjacency matrix of G is the N ⇥N matrix A = (aij)0i,jN�1

with

aij =

8
><

>:

1, if there is an edge from vertex number i

to vertex number j;

0, otherwise.

We are now ready to explain the PageRankTM model. The idea is, as mentioned
above, that a link into a vertex u confers some authority on u. Therefore one pos-
sible ranking could be to assign a rank that is directly proportional to the number

of webpages pointing into u (i.e., proportional to in(u)). That is a reasonable idea
except for the fact that we do not consider all links into u to confer the same
amount of authority. Instead, the webpages that are themselves ranked highly
should be able to confer more authority than lower-ranked webpages. Also, a
link from a page with few links on it should be regarded as more significant than
a link from a page that has a huge number of links.

2

Inf2B Algorithms and Data Structures Note 12 Informatics 2B (KK1.3)

In this basic treatment we will make certain assumptions for technical rea-
sons. We assume that all web pages in our system have some outgoing links.
This is not an entirely natural assumption (especially as we really have a sub-
webgraph obtained by looking at the links between the webpages relevant to our
query) but it is crucial to our argument so we make it (for now). We assume that
our webgraph is strongly connected—in other words, that for any two pages u

and v, there is a sequence of links leading from u to v. With these assumptions,
here is PageRankTM: Let Rv denote the rank of v for any webpage v 2 [N]. For
every webpage u in our collection, the following equality must hold:

Ru =
X

v2In(u)

Rv/|Out(v)|

So the rank of u is the total amount of Rank given from the incoming links to u.
Considering the entire system of ranks of the webgraph, we can actually write
this condition using a weighted form of the adjacency matrix of the webgraph:

(R1, R2, . . . , RN) = (R1, R2, . . . , RN)

0

BBB@

p11 p12 . . . p1N

p21 p22 . . . p2N
...

...
pN1 pN2 . . . pNN

1

CCCA
(12.1)

where
puv =

⇢
1/out(u) if v 2 Out(u)

0 otherwise.

Note the following relationship between P and the adjacency matrix A:

puv = auv/out(u),

for all u, v 2 V .
We could also write (12.1) in shorthand as

R

T = R

T
P, (12.2)

where P = [puv]u,v2[N] and R is the column vector of ranks for [N] (as usual R

T

denotes the transpose of a vector or matrix). Examining (12.2), notice that it is
exactly the same as asking for a fixed point of the following type

R = P

T
R, (12.3)

Furthermore, note that R = P

T
R is almost the condition for R to be an eigenvector

of P

T . The only difference is that the related eigenvalue � does not seem to
appear in the equation (we would expect to have P

T
x = �x). This is because the

ranking R is the eigenvector of P T
corresponding to the eigenvalue 1.

This raises quite a few questions, the main questions being:

• How do we know that 1 is an eigenvalue of the matrix P

T?

• If 1 is an eigenvalue of P T , then how do we know that it is a simple eigenvalue
(i.e., that any two ranking vectors R that satisfy R

T = R

T
P are linearly

dependent—one is a non-zero multiptle of the other)?

3

Inf2B Algorithms and Data Structures Note 12 Informatics 2B (KK1.3)

These questions are important if the PageRankTM model is to mean anything in
the context of our webgraphs.

We start by considering the first question: how do we know that the matrix
has an eigenvector of value 1? Have a look at the system of equations (12.1).
Consider the particular row of matrix P corresponding to the webpage u 2 [N].
Then the sum of the values in that column is the sum of fractional rankings
that u passes to each of its links:

NX

v=1

puv = (
X

v2Out(u)

1/out(u)) + (
P

v 62Out(u) 0) = |Out(u)|/out(u) + 0 = 1.

So for every row of the matrix P , the entries of that row sum to 1. There is
a special name for this sort of matrix in the literature—it is called a stochastic

matrix, and a stochastic matrix is guaranteed to have the eigenvalue 1 (we omit
the proof). So first question answered.

How can we be sure that the matrix cannot have two linearly independent
eigenvectors for 1? This depends on our assumptions about the structure of the
web graph. We assumed that for every pair of webpages u and v, there was a
sequence of links leading from u to v through our webgraph—a graph with this
property is known as a connected graph. With this assumption (and another tiny
assumption, that the series of links from u to v are aperiodic

1), then we can be
assured of the uniqueness of the vector R. Again we omit the proof.

12.2 Finding Eigenvectors for eigenvalue 1

We now make an observation about how we can find a ranking R in the PageRankTM

model. It is not as difficult as it might seem, particularly because we know that R
corresponds to the eigenvector 1. We just have to observe that our conditions
for R given in (12.1) simply correspond to a linear system of equations. You will
have learnt various methods for solving these in your mathematics classes, and
moreover, efficient algorithms for applying these methods do exist (though that’s
not the approach taken with respect to web ranking—see later). As a very simple
example, consider the webgraph of Figure 12.3, perhaps dating back to the early
1990s when there were hardly any webpages on the web.

This mini-graph satisfies all of the conditions that were mentioned in this
section, even the condition of aperiodicity (this is obvious because the graph has
a cycle of length 2 and a cycle of length 3; so no need to look at any more).
Therefore there is a unique (up to constant multiples) eigenvector R satisfying
R

T = R

T
P . To find this particular eigenvector, we write down the matrix P ,

assuming the webpages are in order u, v, w, z:

(Ru, Rv, Rw, Rz) = (Ru, Rv, Rw, Rz)

0

BBB@

0 1
2

0 1
2

1
2

0 0 1
2

1
2

1
2

0 0
1
3

1
3

1
3

0

1

CCCA
. (12.4)

1This condition requires that if we look at the lengths of all the cycles of the graph then the
largest integer that divides all of them is 1. Note that if we find a cycle of length 5 (say) and one
of length 8 (say) in the graph we know it is aperiodic [why?], an important saving in time.

4

Inf2B Algorithms and Data Structures Note 12 Informatics 2B (KK1.3)

u

v

w

z

Figure 12.3. An example webgraph returned by a rare query in ancient times.

We can straightaway read off the equality Rw = Rz/3. Then we can eliminate Rw

by first expressing Rw in terms of Rz on the right-hand side of the equations.

(Ru, Rv, Rw, Rz) = (Ru, Rv, Rw, Rz)

0

BBB@

0 1
2

0 1
2

1
2

0 0 1
2

0 0 0 0
1
3
+ 1

6
1
3
+ 1

6
1
3

0

1

CCCA
. (12.5)

Now we can just write Rw = Rz/3 to one side and continue with a smaller matrix:

(Ru, Rv, Rz) = (Ru, Rv, Rz)

0

B@
0 1

2
1
2

1
2

0 1
2

1
2

1
2

0

1

CA . (12.6)

This is equivalent to:

(Ru, Rv �Rz, Rz) = (Ru, Rv, Rz)

0

@
0 0 1

2
1
2

�1
2

1
2

1
2

1
2

0

1

A
. (12.7)

Observe that the middle equation reads Rv � Rz = (Rz � Rv)/2. This means that
Rv = Rz. Observe that the final equation states that Rz = (Ru + Rv)/2. Then with
our new knowledge that Rz = Rv, this tells us that Ru = Rz also.

An alternative, but equivalent approach, is to multiply out the right hand side
of (12.4) to obtain a set of linear equations:

Ru =
1

2
Rv +

1

2
Rw +

1

3
Rz

Rv =
1

2
Ru +

1

2
Rw +

1

3
Rz

Rw =
1

3
Rz

Rz =
1

2
Ru +

1

2
Rv.

5

Inf2B Algorithms and Data Structures Note 12 Informatics 2B (KK1.3)

It is clear that subtracting the second equation from the first would give us useful
information, we obtain

Ru �Rv =
1

2
Rv �

1

2
Ru

from which it follows that Rv = Ru. Substituting into the fourth equation we
obtain Rz = Ru. This method is probably preferable for such small examples.

Hence we have a solution Ru = Rv = Rz, Rw = Rz/3. So if we take any value
r and set R = (r, r, r/3, r), we get a solution to (12.4). Note all these solutions
are essentially one eigenvector, they are all constant multiples of (1, 1, 1/3, 1). Of
course all that a constant multiple does is to change the scale of ranking but
it does not alter relative positions. It is a good idea to check that this solution
works in (12.4) as an exercise. Note that this solution is not the same as the
answer we would get by allocating rank directly according to in-degree.

12.3 PageRank

TM

in general

In general of course, the web graph will not satisfy the extremely nice conditions
that we laid out in the previous subsection (where we want a sequence of links
from any page u to any other page v). There is a modified definition of PageRankTM

which works in the general case. The intuition behind this ranking system for
general web graphs is not quite as elegant as before, however, it allows us always
to come up with a ranking regardless of the structure of the webgraph.

We observe first that when there are webpages with no outgoing links, they in
some sense “leak” some rank value from the entire web graph. That’s because
they “take in” rank, but never send any out (corresponding to an all-0’s col-
umn vector for that page). Hence the eigenvalue that we should consider may be
slightly smaller than 1. PageRankTM takes care of this by using the symbol 1/c for
this eigenvalue, and specifying that it should be as large as possible. The other
condition that was required by our basic version of PageRankTM was that there
should be a sequence of links from u to v for any pair of pages u and v. We ac-
complish this by assuming that for every page u, there is a small amount of rank
assigned to every page v in the entire system (basically this models the chance
that the user might hop to another page at random, without using the links).
This means that there is an artificial sequence of links from any page u to any
other page v (by co-incidence, this also ensures the overall matrix is aperiodic).

In this more general setting, the PageRankTM model requires that for the min-
imum value of c > 1, every webpage u in our collection, the following equality
should be satisfied for every page u:

R

0(u) = c

�1(1� p)
X

v2In(u)

R

0(v)/|Out(v)|+ c

�1(p/N)1

Here p is the (small) fraction of ranking that is leaked uniformly to all pages in
the webgraph, 1/c is the maximum eigenvalue (for this new system), and 1 is the
vector consisting of 1 in every position, i.e., (1, 1, . . . , 1), the length being deduced
from the context.

In this setting we know that, apart from linearly dependent solutions, we
have a ranking (for the maximum eigenvalue) for any web graph we consider.

6

Inf2B Algorithms and Data Structures Note 12 Informatics 2B (KK1.3)

Techniques for solving a linear system apply to this case, though they are a bit
more complicated than for the basic (unrealistic) case. In practice, a web crawl
(a bit like a random walk on the webgraph) is used in constructing the ranking.

12.4 Further Reading

Neither [GT] nor [CLRS] present any material on Algorithms for the WWW. There
is also a lot of information online, for example:

• An Anatomy of a Large-Scale Hypertextual Web Search Engine, by Sergey
Brin and Lawrence Page, 1998. Online at:

http://www-db.stanford.edu/ backrub/google.html

• The PageRank Citation Ranking: Bringing Order to the Web, by Page, Brin,
Motwani and Winograd, 1998. Available online from:

http://dbpubs.stanford.edu:8090/pub/1999-66

• Authoritative Sources in a Hyperlinked Environment, by Jon Kleinberg.
Available Online from Jon Kleinberg’s webpage:

http://www.cs.cornell.edu/home/kleinber/

7

