Inf2B Algorithms and Data Structures Note 11 Informatics 2B x1.3

Indexing and Sorting for the WWW

We will devote a couple of lectures of the ADS thread to Algorithms for the WWW.
The material is more applied than most other topics though all are concerned
with appropriate efficient algorithms to various problems.

11.1 Indexing

An inverted index to a set of documents (or webpages on the web) is conceptually
similar to the index of an ordinary textbook. The idea is that we have a set of
terms that appear in the text of the documents. Sometimes every individual word
appearing in the documents is a term; possibly with some pruning to account
for upper case versus lower case letters (case folding) and linguistic features!.
At other times we have a restricted set of given terms. There are other types of
index, but this is the most common and is therefore the one we concentrate on
here.

An index can be in many forms, but the standard form is that for every term ¢,
there is an associated list of document identifiers d, ..., d,,, where n, is the num-
ber of documents in which ¢ appears. Therefore once we have the index we can
search our set of documents very quickly by finding the term ¢ in our index
(probably using binary search). In Figure 11.1, we show a “set of documents”
each comprising a single line of a particular nursery rhyme. In Figure 11.2 we
show two inverted indexes for this “set of documents.” The figures are taken
from Chapter 3 of the Managing Gigabytes book mentioned at the end of these
notes.

Document Text

Pease porridge hot, pease porridge cold,
Pease porridge in the pot,

Nine days old.

Some like it hot, some like it cold,
Some like it in the pot,

Nine days old.

[2JNS VI ST

Figure 11.1. A children’s rhyme, each line being treated as a document .

Each of the two indexes of Figure 11.2 consist of a lexicon (the set of terms),
and for every term in the lexicon, an inverted file entry for that term. An inverted
file entry is the frequency of a term followed by a list of locations where that
term appears in the document set; for example, in the left index, the inverted
file for the term ‘hot’ is (2;1,4). Note that both of the Indexes has a frequency
of 2 (appears in two documents) for every term in the lexicon—this is just a co-
incidence for this particular example.

1If we are indexing documents in English it makes sense to regard words and wording as
occurrences of the same stem: word. This is referred to as stemming.

1

Inf2B Algorithms and Data Structures Note 11 Informatics 2B wx1.3
Number Term Documents Number Term Documents;Words
1 cold (2;1,4) 1 cold (2;(1;6), (4;8))
2 days (2;3,6) 2 days (2;(3;2), (6;2))
3 hot (2;1,4) 3 hot (2;(1;3), (4;4))
4 in (2;2,5) 4 in (2;(2;3), (5;4))
5 it (2;4,5) 5 it (2:(4;3,7), (5;3))
6 like (2;4,5) 6 like (2;(4;2,6), (5;2))
7 nine (2;3,6) 7 nine (2;(3;1),(6;1))
8 old (2;3,6) 8 old (2;(3:3), (6;3))
9 pease (2;1,2) 9 pease (2;(151,4),(2;1))
10 porridge (2;1,2) 10 porridge (2;(1;2,5),(2;2))
11 pot (2;2,5) 11 pot (2;(2;5), (5;6))
12 some (2:4,5) 12 some (2;(4;1,5), (5; 1))
13 the (2;2,5) 13 the (2;(2;4), (5;5))

Figure 11.2. Two indexes for the “set of documents” of Figure 11.1.
The left index gives frequency and list of document numbers.
The right index gives frequency, document numbers and
occurrence within the relevant document.

The granularity of an inverted index is the detail to which we record the lo-
cation of a term in the document. In the index on the left of Figure 11.2, the
granularity is document-level. In the index on the right of that Figure, the gran-
ularity is word-level.

The terms of a lexicon have an associated ordering, given by the ordering of
their term-numbers. For the indexes in Figure 11.2 the ordering is alphabetical,
however this is not generally the case (and the mapping of terms to term numbers
will need to be stored).

11.2 Querying using an Index

An Inverted Index enables fast search on a set of documents, when queries are
formulated using the terms of the lexicon. The quality of the query replies will
partly depend on the granularity of the Inverted Index: for example, if we perform
the search “pease” on the left Index of Figure 11.2, then we are informed of the
identifiers of the two documents which contain “pease”, but we do not know
where the term is located in the document (obviously not a big problem with
the ‘documents’ of Figure 11.1). We would need to check the document itself to
look for the position of that term. However, with the finer right-hand Index in
Figure 11.2, we will directly recover the positions of the terms in the documents.

The queries we might need to make are usually more complicated than single-
term queries. However, assuming that our Inverted Index stores the inverted file
entry for every term ¢ in order of document index, then we could use a merging
technique to answer simple boolean queries such as “pease” AND “hot”. Solutions
to boolean queries can be generated in time linear in the length of lists for the two
terms, by performing a synchronised scan of the two lists in a manner similar
to the merge routine of mergeSort. The operation performed by this scan will be

2

Inf2B Algorithms and Data Structures Note 11 Informatics 2B x1.3

N (intersection) in the case of AND and U (union) in the case of OR, and can be
applied inductively, still in linear time.

In practice, when our documents are webpages, we will want to rank the
pages, rather than treat them all as equal. We will discuss this issue (in the
context of the PageRank algorithm of Google) in a subsequent lecture.

11.3 Constructing a Large-Scale Index

Indexing is the act of preprocessing a set of documents to construct an inverted
index for those documents. It is this process that we are concerned with in
this lecture. We are concerned with “indexing in the large” where the set of
documents to be indexed might take up many gigabytes of memory. Therefore in
addition to considering asymptotic running times of our algorithms, the hidden
constant inside these terms will be of interest to us. Also, we will be concerned
with the amount of memory used by our algorithms, as well as the amount of
disk space used.

If we set aside some concerns there are various efficient algorithms that could
be used to construct an inverted index. For example, if we are not concerned
about the amount of memory available (which up to now has always been the
case), we could just extract all (¢, d) pairs from all documents and then sort these
terms in memory. In Section 11.4 we show how to do something like this in a
bit more detail. However, the scenario that we consider in this Lecture Note (and
which arises very frequently in indexing for the web) is one where the computer
performing the indexing is being stretched to its very limit. Hence the goal is
to get the computer to handle as many documents as possible while leaving
enough space to perform computations on those documents. We are happy to
work partly from the disk (rather than in memory) in doing the indexing if this
will allow more documents to be handled. On the other hand disk-accesses must
be rare (since moving to a new location on disk is very expensive compared to
main memory).

11.4 Memory-Based Inversion

If we do not need to worry about the amount of memory available, then we have
a simple algorithm. We can take each document in turn, parse it, and do lexical
analysis on that document (removing stop words like “the”), to extract the terms
for the document in the form of (t,d, f,;) triples (where d is the document, ¢t a
term, and f,, the frequency of that term in the document). Then we only need
to take the union of the document lists and sort them. One way we can choose
to implement this is as a Dicfionary implementation where the items we store in
the dictionary are (key, list) pairs, where each list is a list of (d, f,;) entries (for
its associated term ¢). On recovering a set of terms from a new document d, we
only need to search the dictionary and append relevant (d, f;;) pairs to the list
attached to key ¢ (inserting a new item if necessary). This is the approach we
take in Algorithm 11.3.

The Dictionary data structure can be any Dictionary structure, but for effi-
ciency it is better if it is a structure that keeps the elements somehow in sorted

3

Inf2B Algorithms and Data Structures Note 11 Informatics 2B x5

order. AVL trees give O(lgn) performance for inserting, searching and deleting;
however hash tables (which don’t have smaller overheads) can be more efficient
in practice.

Algorithm memoryBasedinversion(D)

1. Create a Dictionary data structure.
2. for i+ 1 downto |D| do
3 Take document d; € D and parse it into index terms.
4 for each index term ¢ in D; do
5. Let f4,. be the frequency of ¢ in d;.
6. If t is not in S, insert it.
7 Append (d;, fq,+) to t’s listin S.
8. foreachterm1<t<7T do
9. Make a new entry in the inverted file.
10. for each (d, fy;) in ¢’s list in S do
11. Append (d, fq;) to t’s inverted file entry.
12. Append t’s entry to the inverted file.

Algorithm 11.3

Sometimes we might compress t’s inverted file entry before we save it to the
inverted file in line 12.

Observe that with this Algorithm, the term numbers that label the terms can
be considered to be in the same order as the terms themselves (as in Figure 11.2).
We do not mention this explicitly, but it is implicit in our storing of data in S
according to the key t.

The inversion time T;(D) required by this algorithm consists of

e The time T),(D) to read, parse and lexically analyse all the documents (read-
ing and parsing takes linear time with a small constant, and if we are lucky,
the same will be true for lexical analysis).

e The time 7,(D) to query S and append an entry to an item of S for every (¢, d)
pair in D (this is O(nlg(n)), where n is the number of (¢, d) terms in D) .

e The time 7,,(D) to implement the loop in lines 8-12 to write the inverted file,
linear in the size of the Inverted Index (the number of (¢,d) terms in D).

This is a simple and reasonably-efficient algorithm. Due to the removal of
stop words and recurrences of the same term in a given document, it is very
likely that O(nlg(n)) is no larger than a small multiple of D (and in any case
O(nlg(n)) is only an upper bound). This indexing algorithm probably takes linear
time in the size of the input.

Inf2B Algorithms and Data Structures Note 11 Informatics 2B x1.3

However, this is not our main concern. The efficiency of an Indexing algorithm
is measured in hours and not in asymptotic notation. In Managing Gigabytes
some actual figures are given for this algorithm. Another issue is the limit that
exists on the size of the set of documents, due to the limited size of the memory.
This raises the question of whether we need to work ‘in memory’ all the time.
Could we store some of the Documents (or the partially constructed index) on
disk throughout the algorithm (we might want to store the inverted file to disk
after the algorithm has finished)? The issue for disk access is moving a head
that reads from the disk; however, sequential access of a large block of the disk
will not take much more time than the original access. It is true that we could
implement lines 1-7 on disk without loss of performance. That is because the
entries are added into the data structure in a dynamic fashion; when allocating
a new vertex (if we are using an AVL implementation of Dictionary), it is allocated
sequentially in memory (even if we think of it in pointer form). However, for
lines 8-12, it is not possible to work with part of S stored in memory. When
we examine the linked list of (d, f,,;) entries for term ¢ (in order to append them
together onto the inverted file), we cannot expect these to be close to each other in
memory (or on disk, should we take this approach). This phase of the algorithm
would be incredibly slow on disk (again, the numbers involved are discussed in
Managing Gigabytes).

11.5 Sort-Based Inversion

We now present an alternative algorithm for constructing an inverted index that
does allow the disk to be used intelligently throughout the algorithm. The temp
file used in the algorithm refers to a file on disk. This algorithm uses merge-
Sort to sort files that lie on disk; mergeSort can be used as an external sorting
algorithm, because it processes its input in a sequential fashion).

External Merge Sort

In the sorting context, External MergeSort is used when we want to sort a set
of n items, and where n > K) (read > as “much bigger than”), where K is the
number of items that we can fit into the computer’s memory.

Before going into details it is worth noting External MergeSort is really a very
simple idea. The key intuition of MergeSort (internal or external) is that if we
merge two sorted sequences together we get a new single sorted sequence. So if
we make sure we have sorted blocks of whatever size in an input file we merge
them in pairs (possibly with one left over) and keep doing this till there is just
one block. So if we could pull in complete sorted blocks from the input file and
merge them together all in main memory we could then write out the new merged
block to a secondary file. Keep doing this till all blocks have been processed. We
could then copy the auxiliary file back to the input file but that would be a
waste fo time, we can just treat the auxiliary file as our new input file and the
previous input file as the auxiliary file. However if we are sorting a huge amount
of data there comes a point when we cannot hold entire sorted sequences in
main memory, only a part. The key insight here is to note that in order to

5

Inf2B Algorithms and Data Structures Note 11 Informatics 2B x5

merge two sequences all we need to know are the current (as yet unprocessed)
elements of each sequence. We compare these and then get the next element
from the relevant block. For the merged result we could if we wanted just write
it out to file immediately. So in principle, we could just always fetch one element
from each input block, do a comparison and write out the smallest element to
the output (auxiliary) file. But this is a very bad idea because each access to
an external file is very expensive. It is much cheaper to ask for a sequence of
consecutive items to be fetched from the external disk. Since we are limited in
main memory we have no option but to allocate a certain amount for each of
the two sequences to be merged and a certain amount for the merged result.
When we have used up either of the fetched things form the sorted sequences we
ask for another lot till there is no more from that sequence. When we fill up the
memory allocated to the merged sequence we flush it out to the output (auxiliary)
disk. As to how much of the available memory we allocate to each of these, we
are free to choose any policy but it seems reasonable to allocate a third to each
(if we know more about our technology we might choose to change this but the
principle is the same). Finding exact expressions for the number of iterations is
a little tricky and needn’t concern you too much. It is the overall principle that
you need to understand.

Let's now turn to a more detailed description of the idea with pseudocode
given in Algorithm 11.5. The n items to be sorted are stored on disk-A (analagous
to array A in standard mergeSort) and will be sorted into disk-B (analagous to
the scratch array B in standard mergeSort). We initially break the data on disk-
A into n/K sequentially arranged “blocks”, each of size K, and individually sort
each of these blocks in memory?. Then External MergeSort performs a “bottom-
up” version of mergeSort (note that disk-A and disk-B swap roles of input/output
disk as j is incremented during externalMergeSort).

Note that during lines 5-12, externalMergeSort needs to access consecutive
blocks of the current input disk. Once a the start of a block is found all sub-
sequent accesses are sequential. Moreover once we have finished with a pair of
blocks the pointer to the second block is now at the start of the first block of the
next pair. Hence the number of non-sequential disk accesses is approximately
ZJ“EE"/ l(n/(27K) + 1), which is ©(n/K). Aside from this there is a pointer to the
current output-disk.

Finally note that there are variations on this algorithm but the differences are
in the details (e.g., what buffering is used) rather than the overall idea.

Sort-based Inversion

In contrast to Algorithm 11.3, Algorithm 11.5 does not output the terms in al-
phabetical order. Instead they are output in the order in which they have their
“first appearance” in the set of documents. This is a result of the fact that we will
perform the processing of the documents hand-in-hand with the construction of
the index; hence we need to construct parts of the index before we know all the

2For the sake of simplicity we assume that in expressions such as n/K we obtain an integer.
Taking care of cases when this is not so would just obscure the idea.

6

Inf2B Algorithms and Data Structures Note 11 Informatics 2B x1.3

Algorithm externalMergeSort(A)

10.
11.
12.
13.
14.
15.

© N O O A W N~

fori=1ton/K do
read block-i of disk-A (containing K items) into memory;
sort block-i in memory using any ‘in-place’ algorithm (eg quicksort);
write the sort of block i out to disk-B.
/* disk-B now becomes current input-disk */
for j =1 to [lg(n/K)| do
fori=1to (n/2’K) do

buffer the first K/3 entries of block-i and block-i + 1 from
current input-disk into memory ;

initialize the output buffer b (of size K/3);
while there are items left to sort do
perform externalMerge on the small blocks in-memory
/* outputting buffer b when it is full, and inputting
more of block-i/block-i + 1 when needed */
od

swap role of current input-disk between A and B.

Algorithm 11.4

Inf2B Algorithms and Data Structures Note 11 Informatics 2B x5

terms that will belong to the final index. The ordering is memoized by associating
with every term t a term number 7, which marks its position in the ordering.

Throughout the presentation of this algorithm, K denotes the number of in-
verted file entries (¢,d, f4;) that can be held in memory (clearly this will not be a
tight fit, rather K will be an upper bound set to ensure that the algorithm has
enough working memory under these circumstances).

Algorithm sortBasedinversion(D)
1. Create a Dictionary data structure.
2. Create an empty temp file on disk.
3. for i+ 1 downto |D| do
4. Take document d; € D and parse it into index terms (etc).
for each index term ¢ in D; do
Let f, . be the frequency of ¢ in d;.
Check whether ¢t € S (and check term number 7).

5

6.

7.

8. If t ¢ S, insert it (with the next free term number 7).
9 Write (7,d;, f4,-) to temp file (r is ¢’s term number).
0.

Call externalMergeSort on temp file, to sort in order of (7, d) (with memory
size K);

11. /* temp file now sorted. Output inverted file. */
12. for 1 <7<7T do

13. Start a new inverted file entry for ¢ (term number 7).
14. Read the triples (7,d, f;,) from temp file into t's entry.
15. Append t’s entry to the inverted file.

Algorithm 11.5

The main difference between our new algorithm and Algorithm 11.3 is the
way we perform sorting. In our memory-based algorithm we never directly per-
formed any sorting. However by working with a (say) AVL tree implementation
of Dictionary, and inserting new terms into that, and by appending new (d, f;,)
entries to the end of the list for ¢, the effect was to perform insertionSort on the
(t,d) pairs® in our set of documents. However, as we discussed in Section 11.4,
Algorithm 11.3 cannot be adapted to use disk space. In Algorithm 11.5, we make
use of externalMerge.

Our Sort-Based algorithm is organised in a few phases. At the beginning of
the algorithm (lines 1-2), we set up a Dictionary (which will just contain (term,

3In fact, it is a good time to mention that in general, using a balanced tree (either an AVL tree
or a red-black tree) is an immediate way of modifying insertionSort so that it runs in ©(nlgn) time
in the worst-case; recall that inserfionSort has worst-case time Q(n?) in its standard linked list
form.

Inf2B Algorithms and Data Structures Note 11 Informatics 2B x1.3

term number) pairs) and we open a disk file called temp file. In the first phase
of the algorithm (lines 3-9), we examine the documents in sequential order, and
append all (7,d, f,.) triples (in sequential order) into our disk file (updating the
lexicon whenever we find a new term). Next in line 10 we call externalMergeSort
to sort the entire temp file in order of (7, d). Recall from our discussion about ex-
ternalMergeSort that this uses O(n/K) (specifically, about 3(n/K)) disk accesses;
since these are very expensive, we need a computer with a sufficiently large value
of K (so we don’t need too many runs). Finally, in lines 11-15, we use the sorted
temp file to construct the Inverted Index on disk.

There are some issues for Algorithm 11.5 that were not relevant for Algo-
rithm 11.3 but the most important one is disk accessing. For Sort-Based Index-
ing, we will require KX to be smaller than n by some constant factor ¢ (otherwise
we are not saving any space in using the disk). However, if ¢ is too large, the disk
accesses begin to downgrade the running-time of the algorithm. Hence we need
to keep a sensible balance (see Managing Gigabytes for numbers).

As with Algorithm 11.3, we do have the option of compressing an inverted
file entry before appending it into the inverted file index. We should also note
that it is even possible to work with a compressed format of the temporary file
throughout the execution of Algorithm 11.5, leading to optimized performance.
The compression has the effect of shrinking the size of the files stored on disk (or
in memory), and therefore reduces the number of disk accesses that need to be
performed by the algorithm. The merge operation can still be performed on the
runs stored on disk, as long as care is taken. Hence with compression we can
obtain a further speeded version of our Sort-based algorithm.

11.6 Further Reading

Neither [GT] nor [CLRS] present any material on Algorithms for the WWW.

A good textbook is Managing Gigabytes, by Ian. H. Witten, Alistair Moffat, and
Timothy. C. Bell. The relevant chapter for this lecture is Chapter 5 (and some
parts of Chapter 3). This book gives numbers for the time and space taken by
various Index-constructing algorithms (in terms of hours, gigabytes etc).

There is also a lot of information available online. For example, here are two
papers (both are rather application-specific):

e Building a distributed Full-test Index for the Web, by S. Melnik, S. Ragha-
van, B. Yang, and H. Garcia-Molina. ACM Transactions on Information Sys-
tems (TOIS), 19(3). Online at:
http://wwwl0.org/cdrom/papers/275/

e Very Large Scale Information Retrieval, by David Hawking. In Text and
Speech Triggered Information Access, Eds. Gregory Grefenstette and Steve
Renals, 2003. Online at:

http://www.inf.ed.ac.uk/teaching/courses/tts/papers/hawking.pdf

9

Inf2B Algorithms and Data Structures Note 11 Informatics 2B x5

Exercise

Simulate the externalMergeSort algorithm of this note. We assume that K = 6
and the input data (held on Disk A) consists of:

25,2,48,48,2, 36,36, 9, 25,9, 26, 33,7, 46, 1,8, 20, 40, 38, 3,43, 12, 18,9
After the initial sort of blocks of size K Disk B now has the data in the form:
[2,2,25, 36,48, 48], [9,9,25, 26, 33, 36], [1, 7, 8, 20, 40, 46], [3,9, 12, 18, 38, 43]

where we have delineated each sorted block by putting it in square brackets
(this is just for convenience). Proceed to simulate the algorithm, a good level
of granularity to use is to show what happens at each read or write to disk of
data blocks of size K/3. As each data item is processed you could cross it out or
underline it. Here is a possible diagram:

Disk A:

Disk B: [2,2,25,36,48,48],19,9.25,26,33,36].[1,7,8,20,40,46],[3,9,12,18,38,43]

©| O NN

The table for the RAM section shows available memory in a column. Each column
is used to keep track of the state of the RAM as blocks are read in or written out
(it just saves a lot of rubbing out). Each block of size £/3 of the RAM is delineated
with a double line (of course there is just to help keep track of the simulation).
the diagram shows the situation just after sub-blocks of size /'/3 have been read
into the RAM. The next phase is to start merging these.

A complete simulation would be rather long. A good compromise is to simulate
to completion the processing of the first two sorted blocks of Disk B as shown
in the diagram. Then start the process for the next two blocks but jump to its
completion. After that Disk A will have two sorted blocks [what size will they
be?]. Do a few steps of the algorithm on those till you are happy that you have
understood the process.

10

