
Inf2B Algorithms and Data Structures Note 6 Informatics 2B (KK1.3)

Priority Queues and Heaps

In this lecture, we will discuss another important ADT called PriorityQueue. Like
stacks and queues, priority queues store arbitrary collections of elements. Recall
that stacks have a Last-In First-Out (LIFO) access policy and queues have a First-In
First-Out (FIFO) policy. Priority queues have a more complicated policy: each ele-
ment stored in a priority queue has a priority, and the next element to be removed
is the one with highest priority.

Priority queues have numerous applications. For example, they can be used to
schedule jobs on a shared computer. Some jobs will be more urgent than others
and thus get higher priorities. A priority queue keeps track of the jobs to be per-
formed and their priorities. If a job is finished or interrupted, then one with highest
priority will be performed next.

6.1 The PriorityQueue ADT

A PriorityQueue stores a collection of elements. Associated with each element is a
key, which is taken from some linearly ordered set, such as the integers. Keys are
just a way to represent the priorities of elements; larger keys mean higher priorities.
In its most basic form, the ADT supports the following operations:

• insertItem(k, e): Insert element e with key k.

• maxElement(): Return an element with maximum key; an error occurs if the
priority queue is empty.

• removeMax(): Return and remove an element with maximum key; an error
occurs if the priority queue is empty.

• isEmpty(): Return TRUE if the priority queue is empty and FALSE otherwise.

Note that the keys have quite a different function here than they have in Dictionary.
Keys in priority queues are used “internally” to determine the position of an element
in the queue (they don’t really mean anything when they stand-alone), whereas in
dictionaries keys are the main means of accessing elements. Observe that in the
PriorityQueue ADT, we cannot access elements directly using their keys, we can
only take an element that currently has a maximum key (which is something that
depends on relative order).

In many textbooks, you’ll find priority queues in which a smaller key means
higher priority and which consequently support methods minElement() and re-
moveMin() instead of maxElement() and removeMax(). This is a superficial dis-
tinction: by reversing all comparisons, it is easy to turn one version into the other.
More formally, if  is the order on our keys then we define the new order rev by

k1 rev k2 , k2  k1.

It is a simple exercise to show that rev is a total order if and only if  is.

1

Inf2B Algorithms and Data Structures Note 6 Informatics 2B (KK1.3)

6.2 The search tree implementation

A straightforward implementation of the PriorityQueue ADT is based on binary
search trees. If we store the elements according to the value of their keys, with
the largest key stored in the rightmost internal vertex of the tree (remember that
we have the habit of keeping all the leaf vertices empty), we can easily implement
all methods of PriorityQueue such that their running time is ⇥(h), where h is the
height of the tree (except isEmpty(), which only requires time ⇥(1)). If we use AVL
trees, this amounts to a running time of ⇥(lg(n)) for insertItem(k, e), maxElement()
and removeMax().

6.3 Abstract Heaps

A heap is a data structure that is particularly well-suited for implementing the Prior-
ityQueue ADT. Although also based on binary trees, heaps are quite different from
binary search trees, and they are usually implemented using arrays, which makes
them quite efficient in practice. Before we explain the heap data structure, we in-
troduce an abstract model of a heap that will be quite helpful for understanding
the priority queue algorithms that we develop here.

We need some more terminology for binary trees: for i � 0, the ith level of a tree
consists of all vertices that have distance i from the root. Thus the 0th level consists
just of the root, the first level consists of the children of the root, the second level
of the grandchildren of the root, etc. Recall that a complete Binary Search Tree of
height h has 2h+1 � 1 vertices in total (counting both the internal vertices and the
leaves). We say that a binary tree of height h (where we have the usual notion of
left and right children) is almost complete if levels 0, . . . , h � 1 have the maximum
possible number of vertices (i.e., level i has 2i vertices), and on level h we have some

of the possible vertices for that level, such that the vertices (leaves) of level h that do

belong to the tree at level h appear in a contiguous group to the left of the vertices-
positions that do not belong to the tree. Figure 6.1 shows an almost complete tree
and two trees that are not almost complete.

Figure 6.1. The first tree is almost complete; the second and third are not.

Now we have a theorem (similar to proof that AVL trees have O(lgn) height):
Theorem 6.2. An almost complete binary tree with n internal vertices has height

blg(n)c+ 1.

PROOF We first recall that a complete binary tree (a binary tree where all levels
have the maximum possible number of vertices) of height h has 2h+1 � 1 vertices in
total (2h leaves and 2h � 1 internal vertices). This can be proved by induction on h.

2

Inf2B Algorithms and Data Structures Note 6 Informatics 2B (KK1.3)

The number of internal vertices of an almost complete tree of height h is greater
than the number of internal vertices of a complete tree of height h� 1. Moreover it
is at most the number of internal vertices of a complete tree of height h. Thus for
the number n of vertices of an almost complete tree of height h we have

2h�1  n  2h � 1.

For all n with 2h�1  n  2h � 1 we have blg(n)c = h� 1; this implies the theorem. ⇤

In our abstract model, a heap is an almost complete binary tree whose internal
vertices store items such that the following heap condition is satisfied:

(H) For every vertex v except the root, the key stored at v is smaller than or equal
to the key stored at the parent of v.

The last vertex of a heap of height h is the rightmost internal vertex in the hth level.

Insertion

To insert an item into the heap, we create a new last vertex and insert the item
there. It may happen that the key of the new item is larger than the key of its
parent, its grandparent, etc. To repair this, we bubble the new item up the heap
until it has found its position.

Algorithm insertItem(k, e)

1. Create new last vertex v.

2. while v is not the root and k > v.parent .key do

3. store the item stored at v.parent at v

4. v v.parent

5. store (k, e) at v

Algorithm 6.3

Consider the insertion algorithm 6.3. The correctness of the algorithm should
be obvious (we could prove it by induction). To analyse the running time, let us
assume that each line of code can be executed in time ⇥(1). This needs to be
justified, as it depends on the concrete way we store the data. We will do this in
the next section. The loop in lines 2–4 is iterated at most h times, where h is the
height of the tree. By Theorem 6.2 we have h = ⇥(lg(n)). Thus the running time of
insertItem is ⇥(lg(n)).

Finding the Maximum

Property (H) implies that the maximum key is always stored at the root of a heap.
Thus the method maxElement just has to return the element stored at the root of
the heap, which can be done in time ⇥(1) (with any reasonable implementation of
a heap).

3

Inf2B Algorithms and Data Structures Note 6 Informatics 2B (KK1.3)

Removing the Maximum

The item with the maximum key is stored at the root, but we cannot easily remove
the root of a tree. So what we do is replace the item at the root by the item stored
at the last vertex, remove the last vertex, and then repair the heap. The repairing is
done in a separate procedure called heapify (Algorithm 6.4). Applied to a vertex v
of a tree such that the subtrees rooted at the children of v already satisfy the heap
property (H), it turns the subtree rooted at v into a tree satisfying (H), without
changing the shape of the tree.

Algorithm heapify(v)

1. if v.left is an internal vertex and v.left .key > v.key then

2. s v.left

3. else

4. s v

5. if v.right is an internal vertex and v.right .key > s.key then

6. s v.right

7. if s 6= v then

8. exchange the items of v and s

9. heapify(s)

Algorithm 6.4

The algorithm for heapify works as follows: In lines 1–6, it defines s to be the
largest of the keys of v and its children. Since the children of v may be leaves not
storing items, some care is required. If s = v, the key of v is larger than or equal
to the keys of its children. Thus the heap property (H) is satisfied at v. Since the
subtrees rooted at the children are already heaps, (H) is satisfied at every vertex in
these subtrees, so it is satisfied in the subtree rooted at v, and no further action is
required. If s 6= v, then s is the child of v with the larger key. In this case, the items
of s and v are exchanged, which means that now (H) is satisfied at v. (H) is still
satisfied by the subtree of v that is not rooted by s, because this subtree has not
changed. It may be, however, that (H) is no longer satisfied at s, because s has a
smaller key now. Therefore, we have to apply heapify recursively to s. Eventually,
we will reach a point where we call heapify(v) for a v that has no internal vertices
as children, and the algorithm terminates.

The running time of heapify can be easily expressed in terms of the height h
of v. Again assuming that each line of code requires time ⇥(1) and observing that
the recursive call is made to a vertex of height h� 1, we obtain

Theapify(h) = ⇥(1) + Theapify(h� 1).

Moreover, the recursive call is only made if the height of v is greater than 1, thus
heapify applied to a vertex of height 1 only requires constant time. To solve the
recurrence, we use the following lemma:
Lemma 6.5. Let f : N! R such that for all n � 1

f(n) = ⇥(1) + f(n� 1).

4

Inf2B Algorithms and Data Structures Note 6 Informatics 2B (KK1.3)

Then f(n) is ⇥(n).

PROOF We first prove that f(n) is O(n). Let n0 2 N and c > 0 such that f(n) 
c+ f(n� 1) for all n � n0. Let d = f(n0). We claim that

f(n)  d+ c (n� n0) (6.1)

for all n � n0.
We prove (6.1) by induction on n � n0. As the induction basis, we note that (6.1)

holds for n = n0.
For the induction step, suppose that n > n0 and that (6.1) holds for n� 1. Then

f(n)  c+ f(n� 1)  c+ d+ c (n� 1� n0) = d+ c (n� n0).

This proves (6.1).
To complete the proof that f(n) is O(n), we just note that

d+ c (n� n0)  d+ c n = O(n).

The proof that f(n) is ⌦(n) can be done completely analogously and is left as an
exercise. ⇤

The Lemma should be intuitively obvious: we have f(n) = ⇥(1)+f(n�1). Remember
that ⇥(1) means essentially a non-zero constant1. So, unwinding the recurrence,
we have

f(n) = ⇥(1) +⇥(1) + · · ·+⇥(1)| {z }
n times

+f(0).

Of course f(0) is just a constant so it is clear that the expression on the r.h.s.
is ⇥(n). An experienced theoretician would not bother with the proof by induction,
not because of laziness but because of genuine understanding. (The acid test for
this is to be able to supply the proof if necessary.)

Applying Lemma 6.5 to the function Theapify(h) yields

Theapify(h) = ⇥(h). (6.2)

Finally, Algorithm 6.3 shows how to use heapify for removing the maximum.
Since the height of the root of the heap, which is just the height of the heap, is

⇥(lg(n)) by Theorem 6.2, the running time of removeMax is ⇥(lg(n)).

6.4 An array based implementation

The last section gives algorithms for a tree-based heap data structure. However,
one of the reasons that heaps are so efficient is that they can be stored in arrays
in a straightforward way. The items of the heap are stored in an array H, and
the internal vertices of the tree are associated with the indices of the array by
numbering them level-wise from the left to the right. Thus the root is associated
with 0, the left child of the root with 1, the right child of the root with 2, the leftmost
grandchild of the root with 3, etc. (see Figure 6.7). For every vertex v the left child

1Strictly speaking a function such as 1 + 1/(n+ 1) is ⇥(1) but of course is not constant. However
this function is bounded form below by 1 and from above by 2 and it does no harm to think of it as
a constant in our context. The same applies to any ⇥(1) function.

5

Inf2B Algorithms and Data Structures Note 6 Informatics 2B (KK1.3)

Algorithm removeMax()

1. e root .element

2. root .item last .item

3. delete last

4. heapify(root)

5. return e;

Algorithm 6.6

7 8

4 5 6

0

1 2

3

9 10 11

88

17 45

8301716

13 2 16 9 4

88 17 45 16 17 30 8 13 2 16 49

Figure 6.7. Storing a heap in an array. The small numbers next to
the vertices are the indices associated with them.

of v is 2v + 1 and the right child of v is 2v + 2 (if they are internal vertices). The root
is 0, and for every vertex v > 0 the parent of v is bv�1

2 c. We store the number of items
the heap contains in a variable size. Thus the last vertex is size � 1.

Observe that we only have to insert or remove the last element of the heap.
Using dynamic arrays, this can be done in amortised time ⇥(1). Therefore, using
the algorithms described in the previous section, the methods of PriorityQueue can
be implemented with the running times shown in Table 6.8. In many important
priority queue applications we know the size of the queue in advance, so we can
fix the array size when we set up the priority queue (no need for a dynamic array).
In this situation, the running times ⇥(lg(n)) for insertItem and removeMax are not
amortised, but simple worst case running times.

Algorithm 6.9 gives the pseudocode to take an array H storing items and turn it
into a heap. This method is very useful in applications:

To understand buildHeap, observe that bn�2
2 c is the maximum v such that 2v +

1  n � 1, i.e., the last vertex of the heap that has at least one child. Recall that
if heapifyv is applied to a vertex v of a tree such that the subtrees rooted at the
children of v already satisfy the heap property (H), this turns the subtree rooted
at v into a tree satisfying (H). So the algorithm turns all subtrees of the tree into a
heap in a bottom up fashion. Since subtrees of height 1 are automatically heaps,

6

Inf2B Algorithms and Data Structures Note 6 Informatics 2B (KK1.3)

method running time

insertItem ⇥(lg(n)) amortised

maxElement ⇥(1)

removeMax ⇥(lg(n)) amortised

isEmpty 4⇥(1)

Table 6.8.

Algorithm buildHeap(H)

1. n H.length

2. for v bn�2
2 c downto 0 do

3. heapify(v)

Algorithm 6.9

the first vertex where something needs to be done is bn�2
2 c, the last vertex of height

at least 2.
Straightforward reasoning shows that the running time of heapify() is

O(n lg(n)),

because each call of heapify requires time O(lg(n)). Surprisingly, a more refined
argument shows that we can do better:
Theorem 6.10. The running time of buildHeap is ⇥(n), where n is the length of the

array H.

PROOF Let h(v) denote the height of a vertex v and m = bn�2
2 c. By 6.2, we obtain

TbuildHeap(n) =
mX

v=0

⇥(1) + Theapify(h(v))

= ⇥(m) +
mX

v=0

⇥
�
h(v)

�

= ⇥(m) +⇥
⇣ mX

v=0

h(v)
⌘
.

Since ⇥(m) = ⇥(n), all that remains to prove is that
Pm

v=0 h(v) = O(n). Observe that

mX

v=0

h(v) =
hX

i=1

i ·
�
number of vertices of height i

�

=
h�1X

i=0

(h� i) ·
�
number of vertices on level i

�

7

Inf2B Algorithms and Data Structures Note 6 Informatics 2B (KK1.3)


h�1X

i=0

(h� i) · 2i,

where h = blg(n)c+ 1. The rest is just calculation. We use the fact that

1X

i=0

i+ 1

2i
= 4. (6.3)

Then
h�1X

i=0

(h� i) 2i = n

Ph�1
i=0 (h� i) 2i

n
= n

h�1X

i=0

(h� i)
2i

n

 n
h�1X

i=0

(h� i) 2i�(h�1) (since n � 2h�1)

= n
h�1X

i=0

(i+ 1) 2�i

 n
1X

i=0

i+ 1

2i

= 4n.

Thus
Pm

v=0 h(v)  4n = O(n), which completes our proof. ⇤

6.5 Further reading

If you have [GT], there is an entire chapter on “Priority Queues” (with details about
Heaps).

If you have [CLRS], look at the chapter titled “Heapsort” (ignore the sorting for
now).

Exercises

1. Where may an item with minimum key be stored in a heap?

2. Suppose the following operations are performed on an initially empty heap:

• Insertion of elements with keys 20, 21, 3, 12, 18, 5, 24, 30.

• Two removeMax operations.

Show how the data structure evolves, both as an abstract tree and as an array.

3. Show that for any n there is a sequence of n insertions into an initially empty
heap that requires time ⌦(n lg n) to process.

Remark: Compare this to the method buildHeap with its running time of ⇥(n).

4. Let S =
P1

i=0
i+1
2i , we assume without proof that the series does indeed converge

(this is easy to show). Prove that S = 1 + 1
2(S +

P1
i=0

1
2i) = 2 + 1

2S. Deduce that
S = 4.

8

