
Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

Asymptotic Growth Rates and the “Big-O” Notation

In the first lecture of this thread we defined the worst-case running time of an
algorithm, and we saw how to determine this for an algorithm by analysing its
(pseudo) code. We discussed the fact that if we want to abstract away from factors
such as the programming language or machine used (which might change every
couple of years), then we can at best expect to be able to determine the running
time up to a constant factor.

In this lecture we introduce a notation which allows us to determine running
time without keeping track of constant factors1. This is called asymptotic nota-
tion, and it captures how the running time of the algorithm grows with the size
of the input. Asymptotic notation is a basic mathematical tool for working with
functions that we only know up to a constant factor. There are three types of
asymptotic notation that are commonly used in algorithmic analysis, O(·) (“Big-
O”), ⌦(·) (“Omega”) and ⇥(·) (“Theta”); the dot in the parentheses indicates that
we would normally have something in that position (a function).

This note is organised as follows. We begin by introducing the most commonly
used asymptotic symbol “big-O” in §2.1, in the context of functions in general
rather than just functions related to runtimes. We give some examples (again
just working with functions) and give some laws for working with O(·). In §2.2,
we introduce our two other expressions ⌦(·) and ⇥(·), again in the context of
functions. In §2.3 we explain how O, ⌦ and ⇥ are used to bound the worst-
case running time of Algorithms and for basic Data Structure operations. Note
that in Inf2B, we almost always work with worst-case running time, apart from
our treatment of Dynamic Arrays. For these we perform an amortized analysis,
where we bound the running time of a series of operations.

Before going into details for the various notations it is worth stating that like
most powerful tools they take a little getting used to. However the relatively
small effort required is more than amply repaid; these notations help us to avoid
extremely fiddly detail that is at best tedious and at worst can prevent us from
seeing the important part of the picture. The analysis of algorithms is greatly
eased with the use of these tools; learning how to use them is an essential part
of the course.

Finally Appendix A at the end this note that places some matters in a gen-
eral setting and should help with some misconceptions that have happened in
the past (arising from a lack of separation of concerns). Appendix B is a quick
introduction to proof by induction in case you have not met it before or need a
reminder.

2.1 The “Big-O” Notation

R denotes the set of real numbers.

1Most of you will have seen this before, however there might be some joint degree students
who have not done so. As we will be using this notation throughout the course it is essential to
ensure that all have met it.

1

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

Definition 2.1. Let f, g : N! R be functions We say that f is O(g), pronounced f

is big-O of g, if and only if there is an n0 2 N and c > 0 in R such that for all n � n0

we have
0  f(n)  cg(n).

Aside: A variant of the definition you might come across is to use absolute
values for comparing the values of the functions, i.e., the required inequality is
|f(n)|  |g(n)|. This has the virtue of ensuring non-negativity but forces us to
work with absolute values all the time. In the end there is very little difference,
the definition used in these notes is the same as the one in CLRS (see Note 1).
The concern over non-negativity has a simple explanation: �1000000 < 1 but in
terms of size (e.g., number of bits required to encode a number) we want to say
that �1000000 is bigger than 1; comparing absolute values does the job. [Exercise
for the dedicated: recall that a rational number is the ratio of two integers (a
fraction), can we keep things so simple if we want to consider encoding size for
rational numbers?]

Returning to the main definition, there is a slight nuisance arising from the
fact that lg(n) is not defined for n = 0 so strictly speaking this is not a function
from N. There are various ways to deal with this, e.g., assign some arbitrary value
to lg(0). We will never need to look at lg(0) so we will just live with the situation.
Note also that the definition would make sense for functions R ! R but as we
will be studying runtimes measured in terms if input size the arguments to our
functions are always natural numbers.

The role of n0 can be viewed as a settling in period. Our interest is in long
term behaviour (for all large enough values of n) and it is often convenient to
have the freedom that n0 allows us so that we do not need to worry about some
initial atypical behaviour2. See Figure 2.2 for an illustration of this point.

Note that we also insist that the functions take on non-negative values from n0

onwards. This condition is necessary to ensure that certain desirable properties
hold. The fundamental issue is the following: if we have a1  b1 and a2  b2 then
we can safely deduce that a1 + a2  b1 + b2. Can we also deduce that a1a2  b1b2?
An example such as �4  1 and �1  2 but �4 ⇥ �1 6 1 ⇥ 2 shows that care
must be taken. In fact the deduction we want to make is safe provided we have
the extra information that 0  a1  b1 and 0  a2  b2 then it is indeed the
case that 0  a1a2  b1b2. From the point of view of our intended application
area, runtime functions, the condition will be automatically true since runtimes
are never negative. However we will be illustrating some points, and stating
properties, with general mathematical functions and it is for this reason that the
condition is there. Apart from a few early examples we will take it for granted and
never check it for actual runtimes; indeed even in most of our general examples
we have f(n) � 0 for all n so we just need to find n0 and c > 0 such that f(n)  cg(n)
for all n � n0.

To understand the role of c let’s consider the two functions f(n) = 10n and
g(n) = n. Now these functions have exactly the same rate of growth: if we mul-
tiply n by a constant a then the values of f(n) and g(n) are both multiplied by a.

2In terms of the runtime of algorithms, we typically have some set up cost of variables and
data structures which dominates things for small size inputs but is essentially negligible for large
enough inputs where we see the real trend.

2

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

Figure 2.2. A graph of f = 105n3 � 665n2 + 1060n and g = 10n2 + 1. The
graph illustrates the fact that g(n) < f(n) for all n > 4 (in-
deed before that). So in verifying g = O(f) we could take
n0 = 4, no need to make life hard by trying to find its exact
value!

3

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

Yet we have f(n) > g(n) for all n > 0. However choosing c = 10 (or any larger value)
in the definition, we see that f is O(g). Of course g is O(f) as well but this is not
always the case.

An informal (but useful) way of describing f is O(g) is:

For large enough n, the rate of growth (w.r.t. n) of f(n) is no greater than
the rate of growth of g(n).

This latter informal description is useful, because it reminds us that if f is O(g)
it does not necessarily follow that we have f(n)  g(n), what does follow is that
the rate of growth of f is bounded from above by the rate of growth of g.

More formally, we define O(g) to be the following set of functions:

O(g) =
�
f : N! R

�� there is an n0 2 N and c > 0 in R such that for all
n � n0 we have 0  f(n)  cg(n).

Then f is O(g) simply means f 2 O(g).
It is worth making another observation here. If we say that f is a function

then f is the name of the function and does not denote any value of the function.
To denote a value we use f(n) where n denotes an appropriate value in the do-
main of the function3. Thus writing f  g is meaningless unless we have defined
some method of comparing functions as a whole rather than their values (we will
not do this).
Notational convention. As we have seen, for a function g the notation O(g)
denotes a set of functions. Despite this it is standard practice to write f = O(g)
rather than f 2 O(g). This is in fact a very helpful way of denoting things,
provided we bear in mind the meaning of what is being said. This convention
enables us to pursue with ease chains of reasoning such as:

871n3 + 13n2 lg5(n) + 18n+ 566 = 871n3 + 13n2
O(n) + 18n+ 566

= 871n3 +O(n3) + 18n+ 566

= O(n3) +O(n3) +O(n3) +O(n3)

= O(n3).

(Don’t worry just now about the details, we will see this example later with full
explanations.) To clarify, the first equality asserts that there is a function g 2
O(n) such that 871n3 + 13n2 lg5(n) + 18n+ 566 = 871n3 + 13n2

g(n) + 18n+ 566 (this is
because it can be shown that any fixed power of lg(n) is O(n)). The second line
then asserts that whatever function h we have from O(n) the function 13n2

h(n)
is O(n3). Looking now at the final equality, the assertion is that for any functions
g1, g2, g3, g4 all from O(n3) we have that their sum (i.e., the function whose value
at n is g1(n) + g2(n) + g3(n) + g4(n)) is again O(n3).

In our discussion we have also followed standard practice and suppressed
the argument of a function, writing f rather than f(n), whenever we do not need

3It is also common practice to use f(n) as the name of the function when n is a variable in
order to indicate the variable and that f is a univariate function. The point is that f by itself
can never denote a value of the function and should never be used where a value is intended.
Despite this, significant numbers of students persist in the meaningless practice and lose marks
in exams as a result.

4

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

to stress it in any way. Mathematical notation is precise but is in fact closer
to a natural language than non-mathematicians seem to imagine. Provided the
conventions are understood a well established notation aids comprehension im-
mensely. Judge for yourself which of the following is easier to understand and
remember (they state the same thing):

• If f1(n) 2 O
�
g1(n)

�
and f2(n) 2 O

�
g2(n)

�
then f1(n) + f2(n) 2 O

�
g1(n) + g2(n)

�
.

• If f1 = O(g1) and f2 = O(g2) then f1 + f2 = O(g1 + g2).

Just one final word of warning about our usage. When we write f = O(g) the
equality is to be read in a directed way from left to right. Remember that what
this really says is that f 2 O(g). This is of course at variance with the normal
meaning of equality: a = b means exactly the same as b = a. There is no possible
confusion though if we bear in mind the intended meaning when a O appears,
the gain is more than worth the need for interpreting equality in context.
Warning. The preceding discussion does not give you license to invent our own
notational conventions (any more than speaking a language gives you license to
invent arbitrary new words). Such conventions arise out of very long periods
of usage with the useful ones being modified as necessary and finally adopted
widely. A professional mathematician will introduce a new notational convention
only after long thought and if it genuinely helps.
Mathematical writing. Here are some useful extracts from the notes for con-
tributors to the London Mathematical Society:

(1) Organize your writing so that sentences read naturally even when they in-
corporate formulae.

(2) Formulae and symbols should never be separated merely by punctuation
marks except in lists; one can almost always arrange for at least one word
to come between different formulae.

(3) Draft sentences so that they do not begin with formulae or symbols.

(4) Never use symbols such as 9 and 8 as abbreviations in text.

In fact my view is that for the inexperienced user of Mathematics it is reasonable
to say that excessive use of formal logical symbols often indicates a confusion
of mind and represents the triumph of hope over understanding (based on the
misguided belief that the symbols posess some kind of magic). Indeed for this
course there is no need at all to use formal logical symbols such as 9 and 8 (with
the exception of ‘)’ and ‘,’ which can be useful in a sequence of derivations—
but again you must take great care to use them sensibly4). To put it briefly, a
Mathematical argument must read fluently; the aim is to aid comprehension not

4I have seen, far too often, the use of these symbols where at least one side is not a statement!
P) Q and P , Q are meaningless unless P and Q are both statements. It is also very common
to misuse implication, getting it the wrong way round. To be precise if we have proved that P) Q
and that Q is true, we know nothing about P as a result of this reasoning. By contrast if we have
proved that P) Q and that P is true then we can deduce correctly that Q is also true. If, on the
other hand, we know that Q is false then we can deduce that P is false.

5

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

to mask inadequate understanding. If your reasoning is faulty you are much
more likely to spot this by expressing things clearly. This should come as no
surprise, consider trying to understand and perhaps debug a well laid out com-
puter program as opposed to one that is all over the place. The final presentation
of your ideas should be clear, concise and correct.

Failure to ensure that a mathematical argument reads fluently with appropri-
ate connecting and explanatory words accounts for a great number of common
mistakes. Do not be misled by the fact that in many presentations (e.g., lec-
tures) arguments are often sketched out. This is largely done to save time and
the connecting material is usually presented orally rather than being written
down. Naturally when we are first trying to find the solution to a problem we
take such short cuts, the point is to work towards a final full presentation. Get
into the habit of doing this if you have not already done so.

We end this digression by illustrating the need for clear precise language going
hand in hand with clear precise thinking and understanding. Recall the key
definition that is under discussion in this section:

We say that f is O(g) if and only if there is an n0 2 N and a c > 0 in R
such that for all n � n0 we have 0  f(n)  cg(n).

The wording is important. For example the phrase ‘there is an n0 2 N and a c > 0
in R’ tells us that for a given pair of functions f , g we must produce a single
choice of n0, and of c that do the required job (i.e., such that 0  f(n)  cg(n) for
all n � n0). It would be wrong to start the definition with ‘for all n there are n0 2 N
. . . ’ This allows us to change n0 (and c) with n which is certainly not the intention
of the definition [would a definition that allowed us to change n0 and c in this way
but was otherwise as stated above be of any interest?]. When reading definitions
(or any piece of mathematics) take care to understand such subtleties.

We now consider some examples where we just think about bounding functions
in terms of other functions; this helps us to focus on understanding the notation
rather than its applications. Later in this lecture note we will directly consider
functions that represent the running-time of algorithms.
Examples 2.3.

(1) Let f(n) = 3n3 and g(n) = n
3. Then f = O(g).

PROOF: First of all we observe that f(n) � 0 for all n so we just need to find
an n0 and c > 0 such that f(n)  g(n) for all n � n0.

Let n0 = 0 and c = 3. Then for all n � n0, f(n) = 3n3 = cg(n).

Well that is clearly correct but how do we come up with appropriate values
for n0 and c? In this very simple case it is easy enough to see what values to
choose. As a first illustration let’s investigate what is needed for the claim
to be true. We need to find n0 2 N and c > 0 in R such that f(n)  cg(n) for
all n � n0. We have

3n3  cn
3 , 3  c, provided n > 0.

Here we are using the simple fact that if ab  ac and a > 0 then we may
divide out by a to obtain b  c. Conversely, if a > 0 (actually a � 0 is enough

6

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

here) and b  c then we may multiply by a to obtain ab  ac. (What goes
wrong if we ignore the requirement that a � 0?) It follows that if we take
c = 3 and n0 = 1 the requirement for f = O(g) is satisfied.

We note here that in the preceding argument we do not need the full equiv-
alence 3n3  cn

3 , 3  c it is enough to have 3  c) 3n3  cn
3. This shows

that we could take n0 = 0 though this is not of any importance here.

(2) 3n3 + 8 = O(n3).

PROOF: As above we have 3n3 + 8 � 0 for all n.

For this example we will give two proofs, using different constants for c, n0.
This is just to show that there are alternative constants that can be chosen
(though only certain c, n0 pairs will work).

First proof: let c = 4 and n0 = 2. Then for all n � n0 we have n
3 � 8 and thus

3n3 + 8  3n3 + n
3 = 4n3 = cn

3.

Second proof: let c = 11 and n0 = 1. Then for all n � n0 we have n
3 � 1, and

therefore 3n3 + 8  3n3 + 8n3 = 11n3 = cn
3.

Again let’s investigate the situation to find values for c and n0. For a con-
stant c > 0 we have

3n3 + 8  cn
3 () 3 +

8

n3
 c, provided n > 0.

Now we note that as n increases 8/n3 decreases. It follows that

3 +
8

n3
 11, for all n > 0.

So if we take c = 11 and n0 = 1 all the requirements are satisfied. In fact
this derivation combines both of the previous proofs. If we take n0 = 2 then
8/n3  1 so that 3 + 8/n3  4 for all n � n0. Indeed we see that by taking
n0 sufficiently large we can use for c any value that is strictly bigger than 3
[can we use 3 as the value of c?].

(3) lg(n) = O(n)

PROOF: Note that lg(n) � 0 for all n � 1 (in any case we cannot have n = 0 as
lg(0) is undefined), this tells us that our choice of n0 must be at least 1 but
we need to look at possible further requirements for the main inequality to
hold.

Based on our discussion in Note 1 we would expect that in fact lg(n) < n for
all n � 1. So we will try to prove this claim (in effect we are taking n0 = 1
and c = 1). We have

lg(n) < n() n < 2n, for all n > 0.

(To be formal we are using the fact that the exponentiation and logarithmic
functions are strictly increasing in their argument. For the purposes of this
proof all we need is that n < 2n) lg(n) < n.)

7

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

We prove that 2n > n for all n > 0 by induction on n. The base case n = 1 is
clearly true. Now for the induction step let us assume that the claim holds
for n. Then

2n+1 = 2 · 2n > 2n,

where the inequality follows from the induction hypothesis. To complete the
proof we need to show that 2n � n+ 1. Now

2n � n+ 1() n � 1,

and we have finished.

(4) 8n2 + 10n lg(n) + 100n+ 10000 = O(n2).

PROOF: As before 8n2 + 10n lg(n) + 100n + 10000 � 0 for all n (we are lucky
here because there are no negative coefficients).

We have

8n2 + 10n lg(n) + 100n+ 10000  8n2 + 10n · n+ 100n+ 10000, for all n > 0

 8n2 + 10n2 + 100n2 + 10000n2

= (8 + 10 + 100 + 10000)n2

= 10118n2
.

Thus we can take n0 = 1 and c = 1118.

The value for c seems rather large. This is irrelevant so far as the defini-
tion of big-O is concerned. However it is worth noting here that we could
decrease the value of c at the expense of a relatively small increase in the
value of n0. We can illustrate this point with the graph in Figure 2.4. Indeed
any c > 8 will do, the closer c is to 8 the larger n0 has to be (see the discus-
sion above for the second example). In the context of our intended usage of
the big-O notation there is no point at all in expending more effort just to
reduce some constant. In practice for runtimes the constants will depend
on the implementation of the algorithm and the hardware on which it is
run. We could determine the constants, if needed, by appropriate timing
studies. What is independent of the factors mentioned is the growth rate
and that is exactly what asymptotic notation gives us.

Warning. Graphs are very helpful in suggesting the behaviour of functions.
Used carefully they can suggest the choice of n0 and c when trying to prove
an asymptotic relation. However they do not prove any such claim. There
are at least two objections. Firstly all plotting packages can get things wrong
(admittedly they are very reliable in straightforward situations). Secondly,
and more seriously, a displayed graph can only show us a finite portion of
a function’s behaviour. We have no guarantee that if the graph is continued
the suggested trend will not change (it is easy enough to devise examples of
this). Like many tools they are great if used with appropriate care, danger-
ous otherwise.

(5) 2100 = O(1). That is, f = O(g) for the functions defined by f(n) = 2100 and
g(n) = 1 for all n 2 N; both functions are constants.

8

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

Figure 2.4. A graph of 8n2 + 10n lg(n) + 100n+ 10000 and 10n2.

9

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

PROOF: Let n0 = 1 and c = 2100.

It should be obvious that there is nothing special about 2100, we could re-
place it by any non-negative constant and the claim remains true (with an
obvious modification to the proof).

Note that all of the examples from (1) to (5) are proofs by first principles, mean-
ing that we prove the “big-O” property using Definition 2.1, justifying everything
directly. Theorem 2.5 lists some general laws, which can be generally used in
simplifying “‘big-O” expressions, and which make proofs of “big-O” shorter and
easier.
Theorem 2.5. Let f1, f2, g1, g2 : N! R be functions, then

(1) For any constant a > 0 in R: f1 = O(g1) =) af1 = O(g1).

(2) f1 = O(g1) and f2 = O(g2) =) f1 + f2 = O(g1 + g2).

(3) f1 = O(g1) and f2 = O(g2) =) f1f2 = O(g1g2).

(4) f1 = O(g1) and g1 = O(g2) =) f1 = O(g2).

(5) For any d 2 N: if f1 is a polynomial of degree d with strictly positive leading
coefficient then f1 = O(nd).

(6) For any constants a > 0 and b > 1 in R: na = O(bn).

(7) For any constant a > 0 in R: lg(na) = O(lg(n)).

(8) For any constants a > 0 and b > 0 in R: lga(n) = O(nb).

Note that lga(n) is just another way of writing (lg(n))a.

The following example shows how the facts of Theorem 2.5 can be applied:
Example 2.6. We will show that 871n3 + 13n2 lg5(n) + 18n+ 566 = O(n3).

871n3 + 13n2 lg5(n) + 18n+ 566 = 871n3 + 13n2
O(n) + 18n+ 566 by Theorem 2.5(8)

= 871n3 +O(n3) + 18n+ 566 by Theorem 2.5(3)
= 871n3 + 18n+ 566 +O(n3)

= O(n3) +O(n3) by Theorem 2.5(5)
= O(n3) by Theorem 2.5(2)

In §2.3 we will see how O is used in the analysis of the (worst-case) running
time of algorithms.

We will not give the proof of every claim in Theorem 2.5. Most parts are
straightforward consequences of the definition with (6) and (8) requiring extra
facts. For illustration we will prove part (5). First recall that to say f : N! R is a
polynomial function of degree d means that there are a0, a1, . . . , ad 2 R with ad 6= 0
such that

f(n) = adn
d + ad�1n

d�1 + · · ·+ a1n+ a0,

for all n 2 N. (In this definition if we allow the possibility that ad = 0 then the
polynomial is of degree at most d; the proof is fine with this provided the actual

10

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

leading coefficient is strictly positive5.) It is very important to note that for a
given polynomial d is a constant; it can be different for different polynomials but
cannot vary once a polynomial is chosen (only n varies). Our statement assumes
that ad > 0, this is because if ad < 0 the polynomial takes on negative values for
all large enough n. So our task here is to find an n0 and c > 0 such that

(1) f(n) � 0 and

(2) f(n)  cn
d

for all n � 0.
We will show the second of these properties here. The first one will follow from

our discussion on p. 13; so the final choice of n0 will be the maximum of the one
found here and the one found later on. The claim is not automatically true, for
example if f(n) = n� 100 then f(n) < 0 for all n < 100. Now

adn
d + ad�1n

d�1 + · · ·+ a1n+ a0  |ad|nd + |ad�1|nd�1 + · · ·+ |a1|n+ |a0|
 |ad|nd + |ad�1|nd + · · ·+ |a1|nd + |a0|nd for all n > 0

= (|ad|+ |ad�1|+ · · ·+ |a1|+ |a0|)nd
.

So we can take n0 = 1 and c = |ad|+ |ad�1|+ · · ·+ |a1|+ |a0|. There is a slight subtlety
if we allow ad = 0 since then we might have |ad| + |ad�1| + · · · + |a1| + |a0| = 0 but
the definition of O requires that c > 0. No problem we just take c = max(1, |ad| +
|ad�1|+ · · ·+ |a1|+ |a0|) and then our proof works in all cases.

We can prove the claim in a slightly different way (essentially generalising the
discussion of Example 2 on page 7). We have

adn
d + ad�1n

d�1 + · · ·+ a1n+ a0  |ad|nd + |ad�1|nd�1 + · · ·+ |a1|n+ |a0|,

for all n. Now for all n > 0

|ad|nd + |ad�1|nd�1 + · · ·+ |a1|n+ |a0|  cn
d ()

|ad|+
|ad�1|
n

+ · · ·+ |a1|
nd�1

+
|a0|
nd
 c

The left hand side decreases as n increases. Taking n0 = 1 gives us value for c we
derived above (the same observation applies about the possibility that ad = 0). By
taking n0 sufficiently large we can choose c to be as close to |ad| as we like (but
not equal to it unless all the other coefficients are 0). You should think carefully
about what can go wrong if we do not take the absolute values of the coefficients;
when doing something like this simple examples can be very helpful. In this case
consider a polynomial such as n � 2 and try the previous proofs without taking
absolute values (you should find that in both cases things don’t work out).

5By definition the leading coefficient of a polynomial is non-zero so in this context it would be
enough to say that it is positive but we use ‘strictly’ to stress that it is non zero. For the sake of
completeness it is worth pointing out that the zero polynomial (i.e., all coefficients are 0) has no
degree and no leading coefficient, in contrast to all others. This is not worth worrying about for
the applications of this course, no algorithm has 0 runtime!

11

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

2.2 Big-⌦⌦⌦ and Big-⇥⇥⇥

“f is O(g)” is a concise and mathematically precise way of saying that, “up to
a constant factor and for sufficiently large n, the function f(n) grows at a rate
no faster than g(n)”. Sometimes, we also want to give lower bounds, i.e., make
statements of the form “up to a constant factor, f(n) grows at a rate at least as
fast as g(n)”. Big-Omega (written as ⌦) is the analogue of big-O for this latter
kind of statement.
Definition 2.7. Let f, g : N ! R be functions. We say that f is ⌦(g) if there is an
n0 2 N and c > 0 in R such that for all n � n0 we have

f(n) � cg(n) � 0.

Informally, we say that f is big-⌦ of g if there is some positive constant c such
that for all sufficiently large n (corresponding to the n0) we have f(n) � cg(n) � 0.

A more informal (but useful) way of describing f = ⌦(g) is:

For large-enough n, the rate-of-growth (wrt n) of f(n) is no less than the
rate-of-growth of g(n).

Not surprisingly we can state laws for big-⌦ that are similar to those for big-O:

Theorem 2.8. Let f1, f2, g1, g2 : N! R be functions, then

(1) For any constant a > 0 in R: f1 = ⌦(g1) =) af1 = ⌦(g1).

(2) f1 = ⌦(g1) and f2 = ⌦(g2) =) f1 + f2 = ⌦(g1 + g2).

(3) f1 = ⌦(g1) and f2 = ⌦(g2) =) f1f2 = ⌦(g1g2).

(4) f1 = ⌦(g1) and g1 = ⌦(g2) =) f1 = ⌦(g2).

(5) For any d 2 N: if f1 is a polynomial of degree d with strictly positive leading
coefficient then f1 = ⌦(nd).

(6) For any constant a > 0 in R: lg(na) = ⌦(lg(n)).

Compare this with Theorem 2.5 for big-O and note that two items from there
do not have corresponding ones in the current theorem [why?]. Let’s prove the
claim of item 5, bearing in mind that in the following we are assuming ad > 0.

adn
d + ad�1n

d�1 + · · ·+ a1n+ a0 � adn
d � |ad�1|nd�1 � · · ·� |a1|n� |a0|,

for all n. (Note that we do not take the absolute value of ad since we have assumed
that ad > 0.) For all n > 0

adn
d � |ad�1|nd�1 � · · ·� |a1|n� |a0| � cn

d ()

ad �
✓
|ad�1|
n

+ · · ·+ |a1|
nd�1

+
|a0|
nd

◆
� c

12

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

Now |ad�1|/n + · · · + |a1|/nd�1 + |a0|/nd is always non-negative and is a decreasing
function of n which tends to 0 as n increases. So there is some value n0 of n such
that

ad >
|ad�1|
n

+ · · ·+ |a1|
nd�1

+
|a0|
nd

for all n � n0. So we can take c = ad � (|ad�1|/n0 + · · ·+ |a1|/nd�1
0 + |a0|/nd

0) to satisfy
the definition of big-⌦ and we can use the n0 we have already identified. Note
that we do indeed have c > 0 as required owing to the assumption that ad > 0 and
the choice of n0. Since cn

d � 0 for all n (and hence for all n � n0 we are done. Note
that we have proved here that adnd + ad�1n

d�1 + · · ·+ a1n+ a0 � 0 for all n � n0 just
as promised on p. 11.

You might find the preceding proof less satisfactory than the correspond-
ing one for big-O because there we could give the value of the constants di-
rectly in terms of the given coefficients6. We can do the same here: let b =
max{|ad�1|, . . . , |a1|, |a0|} then

|ad�1|
n

+ · · ·+ |a1|
nd�1

+
|a0|
nd
 b

✓
1

n
+ · · ·+ 1

nd�1
+

1

nd

◆

 bd

n
.

So if we ensure that ad > bd/n then we can take c = ad� bd/n. Now ad > bd/n if and
only if n > bd/ad (since ad > 0) so we just need n to be at least as large as the next
integer after bd/ad. This is our value of n0 and it gives us c = ad � bd/n0.

It is a good idea for you to consider why the claim is false (always) if ad  0. The
fact that the preceding proof does not work is of course not enough to establish
that the claim is false, maybe some other proof works (none does).

Finally, in this course our functions measure runtime and as a consequence
the leading coefficient of any polynomial that we consider will necessarily be
strictly positive. A polynomial with negative leading coefficient takes on negative
values for all large enough n (indeed it goes to �1 as n goes to 1), this gives a
way to tackle the problem of the preceding paragraph).

We can combine big-O and big-⌦ as follows:
Definition 2.9. Let f, g : N ! R be functions. We say that f is ⇥(g), or f has the
same asymptotic growth rate as g, if f is both O(g) and ⌦(g).

Note that f is ⇥(g) if and only if f is O(g) and g is O(f).
In the examples that follow we will just present the verification of each claim

for the stated values of n0 and c. Work out “investigation” type proofs as well.
Examples 2.10.

(1) Let f(n) = 3n3 and g(n) = n
3. Then f = ⌦(g).

(combining this with Example 2.3, (1), will give 3n3 = ⇥(n3))

PROOF: Let n0 = 0 and c = 1. Then for all n � n0, f(n) = 3n3 � cg(n) = g(n) � 0.

6Note that the definition only requires that the constants exist, it does not ask for a method
to find them. So as long as we prove their existence the definition is satisfied thus the first proof
is perfectly OK.

13

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

(2) Let f(n) = lg(n) and g(n) = lg(n2). Then f = ⌦(g)

PROOF: Let n0 = 1 and c = 1/2. Then for every n � n0 we have,

f(n) = lg(n) =
1

2
2lg(n) =

1

2
lg(n2) =

1

2
g(n).

The only interesting step above is the conversion of 2lg(n) to lg(n2) . This
follows from the well-known property of logs, log(ak) = k log(a).

(3) if f1 is a polynomial of degree d with strictly positive leading coefficient then
f1 = ⇥(nd).

PROOF: By Theorem 2.5 f = O(nd) while, by Theorem 2.8, f = ⌦(nd).

2.3 Asymptotic Notation and worst-case Running Time

Asymptotic notation seems well-suited towards the analysis of algorithms. The
big-O notation, O

�
·
�
, allows us to put an upper bound on the rate-of-growth of

a function, and ⌦
�
·
�

allows us to to put a lower bound on the rate-of-growth
of a function. Thus these concepts seem ideal for expressing facts about the
running time of an algorithm. We will see that this is so, asymptotic notation
is essential, but we need to be careful in how we define things. It is helpful
to remind ourselves of the definition of worst-case running time, as this is our
standard measure of the complexity of an algorithm:

Definition 2.11. The worst-case running time of an algorithm A is the function
TA : N! N where TA(n) is the maximum number of computation steps performed
by A over all inputs of size n.

We will now also define a second concept, the best-case running time of an
algorithm. We do not consider best-case to be a good measure of the quality of
an algorithm, but we will need to refer to the concept in this discussion.

Definition 2.12. The best-case running time of an algorithm A is the function
BA : N! N where BA(n) is the minimum number of computation steps performed
by A over all inputs of size n.

One way to use asymptotic notation in the analysis of an algorithm A is as
follows:

• Analyse A to obtain the worst-case running time function TA(n).

• Go on to derive upper and lower bounds on (the growth rate of) TA(n), in
terms of O

�
·
�
, ⌦

�
·
�

and ⇥
�
·
�
.

In fact such an approach would fail to capitalise on one of the most useful as-
pects of asymptotic notation. It gives us a way of focusing on the essential details
(the overall growth rate) without being swamped by incidental things (unknown
constants or sub-processes that have smaller growth rate).

14

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

Algorithm linSearch(A, k)
Input: An integer array A, an integer k

Output: The smallest index i with A[i] = k, if such an i exists,
or �1 otherwise.

1. for i 0 to A.length � 1 do

2. if A[i] = k then

3. return i

4. return �1

Algorithm 2.13

Linear search

We now give our first example using the linSearch algorithm of Note 1. For this
first example we will carry out the analysis by the two step process (since we
have already carried out the first step).

Recall that we use small positive constants c1, c2, c3, c4 to represent the cost of
executing line 1, line 2, line 3 and line 4 exactly once. The worst-case running
time of linSearch on inputs of length n satisfies the following inequality:

(c1 + c2)n+min
�
c3, (c1 + c4)

 TlinSearch(n)  (c1 + c2)n+max

�
c3, (c1 + c4)

.

For linSearch, the best-case (as defined in Definition 2.12) will occur when we find
the item searched for at the first index. Hence we will have BlinSearch(n) = c1+c2+c3.

Now we show that TlinSearch(n) = ⇥(n) in two steps.

O(n): We know from our analysis in Note 1 that

TlinSearch(n)  (c1 + c2)n+max
�
c3, (c1 + c4)

.

Take n0 = max{c3, (c1 + c4)} and c = c1 + c2 + 1 in the definition of O(·). Then
for every n � n0, we have

TlinSearch(n)  (c1 + c2)n+ n0  (c1 + c2 + 1)n = cn,

and we have shown that TlinSearch(n) = O(n).

⌦(n): We know from our Note 1 analysis that

TlinSearch(n) � (c1 + c2)n+min
�
c3, (c1 + c4)

.

Hence TlinSearch(n) � (c1 + c2)n, since all the ci were positive. In the definition
of ⌦, take n0 = 1 and c = c1 + c2, and we are done.

Finally by definition of ⇥ (in §2.2), we have TlinSearch(n) = ⇥(n). We then say that
the asymptotic growth rate of linSearch is ⇥(n).

The significance of the preceding analysis is that we have a guarantee that
the upper bound is not larger than necessary and at the same time the lower
bound is not smaller than necessary. We will discuss this further in §2.3

15

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

Finally note just how tedious is the process of keeping track of unknown
constants. Not only that but readability is severely hampered. This disappears
as soon as we switch to full use of asymptotic notation. Let’s illustrate the point
with linSearch.

Upper bound. As before we let n be the length of the input array. Line 1 is
executed at most n = O(n) times. It controls the loop body on lines 2 and 3. Each
of these lines costs a constant, so each costs O(1), and of course line 1 itself costs
O(1) each time it is executed. So the overall cost here is O(n)(O(1)+O(1)+O(1)) =
O(n)O(1) = O(n). Line 4 is executed once and costs O(1) and so the total cost of
the algorithm is O(n) +O(1) = O(n).
Note: Strictly speaking line 1 is executed at most n+1 times, the extra one being
to discover that the loop variable is out of bounds (i.e., i > A.length � 1) in those
cases where the integer k does not occur in the array. This possible final time
does not cause the execution of the loop body and costs a constant. Since our
runtimes will always be at least a non-zero constant the cost contributed by such
extra executions of loop control lines would be absorbed in the overall runtime
(in terms of our analysis above the cost is O(n) + O(1) = O(n)). It follows that
we can safely ignore this extra execution and we will do this from now on. A bit
of thought shows that the same reasoning applies to nested loops as well. For
the avoidance of doubt we will always count the cost of executions of a loop and
its body but not the constant incurred in finding that a loop variable is out of
bounds.

Lower bound. Consider any input where the integer k does not occur in the
array. Then the condition in the loop is never true so we never execute the return
in line 3. It follows that line 1 is executed at least n = ⌦(n) times. Since each
execution of the line costs ⌦(1) the overall cost of this line alone is ⌦(n)⌦(1) =
⌦(n). Thus the cost of the algorithm is ⌦(n).
Note: We did not bother to count the cost of lines 2 and 4 of the algorithm. This
is because we already know the upper bound is O(n) so once we have reached an
⌦(n) lower bound we know that the rest will not increase this asymptotic cost. So
why do the extra work? Let’s be clear: counting the extra lines would of course
have an effect on the precise runtime but the growth rate remains the same.

Misconceptions about O, ⌦

This section is aimed at dispelling two common misconceptions, both of which
arise from over-interpreting O’s significance as an “upper bound” and ⌦’s sig-
nificance as a “lower bound”. Figure 2.14 concerning linSearch will be useful.

Misconception 1: If for some algorithm A we are able to show TA(n) = O(f(n))
for some function f : N ! R, then the running time of A is bounded by f(n) for
sufficiently large n.
FALSE: If TA(n) = O(f(n)), the rate of growth of the worst-case running time of A
(with respect to the size n of the input) grows no faster than the rate of growth
of f (wrt n). But TA(n) may be larger than f(n), even as n gets large—we are only

16

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

1B(n)=c +c +c2

1T(n)=(c +c)n + ...2

45403530252015105

10
5

15

25
20

30
35
40
45
50
55
60

70
65

3

Figure

2.14. Best-case running time and worst-case running time for linSearch.

guaranteed that TA(n)  cf(n) for large n, where c > 0 is the constant used in
proving that TA(n) is O(f(n)).

As a concrete example of this, re-consider our analysis of the worst-case
running-time of linSearch. We showed that TlinSearch = O(n) above. We never
pinned down any particular values for c1, c2, c3, c4. However, whatever they are,
we could have shown TlinSearch = O(12(c1 + c2)n) in exactly the same way as we
showed TlinSearch = O(n) (but with a different value of c). However, it is certainly
not the case that TlinSearch(n)  1

2(c1 + c2)n for any n. In fact for any constant ↵ > 0,
we could have shown TlinSearch = O(↵n). To see this graphically, look at Figure 2.3,
where the various lines surrounding the “worst-case” line, both above and below
the line for TlinSearch all represent potential f(n) functions for TlinSearch(n) (there are
infinitely many such functions).

Misconception 2: We know that the TA(n) = O(f(n)) implies that cf(n) is an
“upper bound” on the running time of the algorithm A on any input of size n, for
some constant c > 0. This fact can sometimes mislead newcomers into believing
that the result TA(n) = ⌦(g(n)) implies a lower bound on the running-time of A
on all inputs of size n (with some constant being involved), which is FALSE. This
confusion arises because there is an asymmetry in our use of O and ⌦, when we
work with worst-case running time.

O: Suppose we know that TA(n) = O(f(n)) for some function f : N! R. Then we
know that there is a constant c > 0 so that TA(n)  cf(n) for all sufficiently
large n. Hence, because TA(n) is the worst-case running time, we know that
cf(n) is an upper bound on the running time of A for any input of size n.

⌦: Suppose we know that TA(n) = ⌦(g(n)) for some function g : N! R. Well, we
know there is a constant c

0
> 0 such that TA(n) � c

0
g(n) for all sufficiently

large n. This part of the argument works fine. However, TA(n) is the worst-
case running time, so for any n, there may be many inputs of size n on
which A takes far less time than on the worst-case input of size n. So

17

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

the ⌦(g(n)) result does not allow us to determine any lower bound at all
on general inputs of size n. It only gives us a lower bound on worst-case
running time, i.e., there is at least one input of size n on which the algorithm
takes time c

0
g(n) or more.

As a concrete example of this, note that in Figure 2.3, any of the parallel lines
to TlinSearch(n) are potential ⌦(·) functions for TlinSearch(n). These lines are far
above the line for the best-case of linSearch. In fact every function f satisfy-
ing TlinSearch(n) = ⇥(f(n)) (including those parallel lines to TlinSearch(n)) is guaran-
teed to overshoot the line for BlinSearch(n) when n gets large enough.

Note that the asymmetry is not in the definitions of O and ⌦ but in the use
to which we put them, i.e., producing bounds on the worst case running time of
algorithms. To illustrate this point, suppose we have a group of people of various
heights and the tallest person has height 1.9m. Then any number above 1.92 is
an upper bound on their height but contains less information than the exact one
of 1.92. If we want to be sure that 1.92 is as good as we can get then all that is
necessary is to produce at least one person whose height is at least 1.92m. Note
the asymmetry: for the upper bound all persons must satisfy it, for the lower
bound at least one must do so.

Why bother with ⌦? Is O not enough?

Why use ⌦(·) to bound TA(n), when upper bounds are what we really care about?
We can explain this very easily by looking at linSearch again. In §2.3 we first
proved that TlinSearch(n) = O(n). However, we would have had no trouble prov-
ing TlinSearch(n) = O(n lg(n)) or TlinSearch(n) = O(n2). Note that n, n lg(n) and n

2

differ by significantly more than a constant. So the following question arises:
How do we know which f(n) is the “truth”, at least up to a constant? We know
it cannot be n lg(n) or n

2, but how do we know it is not a sub-linear function
of n? The answer is that if we can prove TA(n) = O(f(n)) and TA(n) = ⌦(f(n))
(as we did for linSearch), then we know that f(n) is the true function (up to a
constant) representing the rate-of-growth of TA(n). We then say that f(n) is the
asymptotic growth rate of the (worst case) runtime of A. The true growth rate of
the worst-case running time of linSearch was pretty obvious. However for other
more interesting algorithms, we will only be sure we have a “tight” big-O bound
on TA(n) when we manage to prove a matching ⌦ bound, and hence a ⇥ bound.

This is perhaps the place to mention another fairly common error7. Suppose
we have an algorithm consisting of some loops (possibly nested) from which there
is no early exit and we produce an upper bound of, say, O(n2). This does not
entitle us to claim that ⌦(n2) is also a lower bound. The ‘reasoning’ given for such
a fallacious claim is that as there is no early exit the algorithm always does the
same amount of work (true) and so the lower bound follows. This cannot possibly

7I am aware that quite a few such misconceptions have been pointed out in this note and there
a danger of overdoing things. However each misconception discussed has occurred regularly
over the years, e.g., in exam answers. The common thread is a failure to understand or apply the
definitions rigorously. Naturally there will be many readers who will have grasped the essential
points already; unfortunately there is no way to produce notes that modify themselves to the
exact requirements of the reader!

18

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

be a correct inference: if O(n2) is an upper bound then so are O(n3), O(n4) etc.
If the inference were correct it would entitle us to claim a lower bound ⌦(nd) for
any d � 2! Clearly false. A genuine proof of a lower bound ⌦(n2) reassures us
that in deriving the upper bound we did not over estimate things.

Note that for some algorithms, it is not possible to show matching O(·) and ⌦(·)
bounds for TA(n) (at least not for a smooth function f). This is not an inherent
property of the algorithms, just a consequence of our limited understanding of
some very complicated situations.

Typical asymptotic growth rates

Typical asymptotic growth rates of algorithms are ⇥(n) (linear), ⇥
�
n lg(n)

�
(n-log-

n), ⇥(n2) (quadratic), ⇥(n3) (cubic), and ⇥(2n) (exponential). The reason why lg(n)
appears so often in runtimes is because of the very successful divide and conquer
strategy (e.g., as in binarySearch). Most textbooks contain tables illustrating how
these functions grow with n (e.g., [GT] pp.19–20), see also Figures 2.15, 2.16.

2.4 The Running Time of Insertion Sort

We now analyse the insertion sort algorithm that you are likely to have seen else-
where. The pseudocode for insertion sort is given below as Algorithm 2.17. The
algorithm works by inserting one element into the output array at a time. After
every insertion, the algorithm maintains the invariant that the A[0 . . . j] subarray
is sorted. Then A[j +1] becomes the next element to be inserted into the (already
sorted) array A[1 . . . j].

Let the input size n be the length of the input array A. Suppose the inner loop
in lines 4–6 has to be iterated m times. One iteration requires time

�
O(1)+O(1)+

O(1)
�
= O(1). Thus the total time required for the m iterations is

mO(1) = O(m).

Since m can be no larger than n, it follows that O(m) = O(n) (i.e., any function
that is O(m) is necessarily O(n), but not conversely—remember that we read
equality only from left to right when asymptotic notation is involved). The outer
loop in lines 1–7 is iterated n� 1 times. Each iteration requires time O(1)+O(1)+
O(1) + O(n) + O(1) = O(n) (lines 1, 2, 3, and 7 cost O(1) and the inner loop costs
O(n)). Thus the total time needed for the execution of the outer loop and thus for
insertionSort is

(n� 1)O(n) = nO(n) = O(n2).

Therefore,
TinsertionSort(n) = O(n2). (2.1)

Note, once again, how the use of asymptotic notation has helped us to avoid
irrelevant detail (such as giving names to unknown constants, or adding up
several constants only to observe that this is another constant).

19

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

Figure 2.15. Graph of n, n lg(n), n2 and n
3.

20

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

Figure 2.16. Graph of n3 and 2n.

21

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

Algorithm insertionSort(A)
Input: An integer array A

Output: Array A sorted in non-decreasing order

1. for j 1 to A.length� 1 do

2. a A[j]

3. i j � 1

4. while i � 0 and A[i] > a do

5. A[i+ 1] A[i]

6. i i� 1

7. A[i+ 1] a

Algorithm 2.17

This tells us that the worst-case running time of insertion sort is O(n2). But
for all we know it could be better8. After all , it seems as though we were quite
careless when we estimated the number m of iterations of the inner loop by n; in
fact, m is at most j when the A[j] element is being inserted.

We will prove that

TinsertionSort(n) �
1

2
n(n� 1). (2.2)

Since this is a statement about the worst-case running time, we only need to
find one array An of size n for each n such that on input An, insertionSort does at
least 1

2n(n� 1) computation steps. We define this array as follows:

An = hn� 1, n� 2, . . . , 0i.

Let us see how often line 5 is executed on input An. Suppose we are in the jth
iteration of the outer loop. Since A[j] = n� j � 1 is smaller than all the elements
in A[0 . . . j � 1] (these are the elements n � 1, n � 2, . . . , n � j, in sorted order) it
follows that the insertion sort algorithm will have to walk down to the very start
of A[0 . . . j � 1], so that line 5 is executed j times when inserting A[j] = n � j � 1.
Thus line 5 is executed j times for element A[j]. Thus overall line 5 is executed

n�1X

j=1

j =
1

2
n(n� 1)

times. Clearly, each execution of line 5 requires at least 1 computation step.
Thus (2.2) holds.

Finally n(n � 1)/2 = ⌦(n2) and so our O(n2) upper bound was not an overesti-
mate in terms of growth rate. We have shown that TinsertionSort(n) = ⇥(n2).

8There is nothing deep going on here. To return to a variant of an earlier example, if a person
is 5 feet tall (approximately 1.5 metres) then it is correct to say that his/her height is no greater
than 5, 6, 7, 8, . . . feet. Each number gives correct but less and less accurate information.

22

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

It is worthwhile returning to the point made above about our estimation of
the number m of iterations of the inner loop by n. How would we have a sense
that the estimation is not so crude as to lead to too big an upper bound? Well
we observed that m is at most j when the A[j] element is being inserted and
a little thought shows that there are inputs for which it is this bad (e.g., the
input array above used for the lower bound). Now for j � n/2 we now know that
m = j = ⌦(n/2) = ⌦(n). As there are around n/2 values of j with j � n/2 we expect
a runtime of around n/2⌦(n) = ⌦(n2), so our estimation of j as O(n) doesn’t
look so careless in terms of the asymptotic analysis. None of this is a precise
proof but is the sort of intuition that comes naturally with enough practice and
can be turned into a precise proof as shown above. Developing your intuition
in this direction is important as it often helps to avoid getting bogged down in
unnecessary detail.

2.5 Interpreting Asymptotic Analysis

In Lecture Note 1 we argued that determining the running time of an algorithm
up to a constant factor (i.e., determining its asymptotic running time) is the best
we can hope for.

Of course there is a potential problem in this approach. Suppose we have two
algorithms A and B, and we find out that TA(n) = ⇥(n) while TB(n) = ⇥

�
n lg(n)

�
.

We conclude that A is more efficient than B. However, this does not rule out that
the actual running time of any implementation of A is 21000n, whereas that of B
may only be 100n lg(n). This would mean that for any input that we will ever
encounter in real life, B is much more efficient than A. This simply serves to
underline that fact that in assessing an algorithm we need to study it along with
the analyisis. This will usually give us a good idea if the analysis has swept any
enormous constants under the carpet (they are not likely to be introduced by
the implementation unless it is extremely inept; alas this cannot be ruled out!).
Finally we can implement (carefully) any competing algorithms and experiment
with them.

2.6 Further Reading

If you have [GT], you might have edition 3 or edition 4 (published August 2005).
You should read all of the chapter “Analysis Tools” (especially the “Seven func-
tions” and “Analysis of Algorithms” sections). This is as Chapter 3 in Ed. 3,
Chapter 4 in Ed. 4.

If you have [CLRS], then you should read Chapter 3 on “Growth of Functions”
(but ignore the material about the o(·) and !(·) functions).

Exercises

1. Determine which of the following statements are true or false. Justify your
answer.

(1) n
3 = O(256n3 + 12n2 � n+ 10000).

23

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

(2) n
2 lg(n) = ⇥(n3).

(3) 2blg(n)c = ⇥(n).

2. In your Learning and Data lectures of Inf2B, you have seen (or soon will see)
procedures for estimating the mean and variance of an unknown distribu-
tion, using samples from that distribution. What is the asymptotic running
time of these mean-estimation and variance-estimation procedures?

3. Suppose we are comparing implementations of five different algorithms
A1, . . . , A5 for the same problem on the same machine. We find that on
an input of size n, in the worst-case:

• A1 runs for c1 n
2 � c2 n+ c3 steps,

• A2 runs for c4 n
1.5 + c5 steps,

• A3 runs for c6 n lg(n3) + c7 steps,

• A4 runs for 2bn/3c + c8 steps.

• A5 runs for n
2 � c9 n lg4(n) + c10 steps.

Give a simple ⇥-expression for the asymptotic running time of each algo-
rithm and order the algorithms by increasing asymptotic running times.
Indicate if two algorithms have the same asymptotic running time.

4. Determine the asymptotic running time of the sorting algorithm maxSort
(Algorithm 2.18).

Algorithm maxSort(A)
Input: An integer array A

Output: Array A sorted in non-decreasing order

1. for j n� 1 downto 1 do

2. m 0

3. for i = 1 to j do

4. if A[i] > A[m] then m i

5. exchange A[m], A[j]

Algorithm 2.18

Can you say anything about the “best-case” function BmaxSort(n)?

24

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

5. Use two appropriate theorems to prove the following.

(1) For any constant a > 0 in R: f1 = ⇥(g1) =) af1 = ⇥(g1).

(2) f1 = ⇥(g1) and f2 = ⇥(g2) =) f1 + f2 = ⇥(g1 + g2).

(3) f1 = ⇥(g1) and f2 = ⇥(g2) =) f1f2 = ⇥(g1g2).

(4) f1 = ⇥(g1) and g1 = ⇥(g2) =) f1 = ⇥(g2).

Appendix A: Putting bounds on functions and runtimes

§1. General setting. This supplement discusses the process of putting upper
and lower bounds from a slightly more general perspective. The material here is
not new, it covers the same ground as the note but putting things this way might
prove helpful to some. If you are already very clear about the issues reading this
should be very quick, if this is not the case then draw your own conclusions!

Consider a function F : N ! R defined by some means. Let’s note in passing
that the definition does not fix any method of computing F (n) given n, it simply
fixes a unique value by appropriate conditions9. We say that a function U : N! R
is an upper bound for F if F (n)  U(n) for all n. Similarly a function L : N! R is a
lower bound for F if L(n)  F (n) for all n. In many situations we don’t mind if the
inequalities fail to hold for some initial values as long as they hold for all large
enough values of n (recall that this is the same as saying that there is an n0 2 N
such that the inequality holds for all n � n0). So with this situation a lower and
upper bound give us the information that

L(n)  F (n)  U(n) (†)

for all large enough values of n. Note that the definition of a lower bound is en-
tirely symmetrical to that of an upper bound, the only difference is the inequality.

There can be various reasons for wanting to find upper and lower bounds,
for us the main one is because although we have a precise definition of F we
cannot obtain an exact formula for it. If we have upper and lower bounds we are
of course interested in how good they are. To illustrate the point suppose we are
seeking to find information about some integer M . After some work we find that
0  M  1000000. This certainly gives us information but of a rather imprecise
nature because the lower and the upper bounds are very far apart. If we worked
a bit more and found that 12  M  20 we’d be in a better position. In terms of
functions we want L(n) and U(n) to be as close as possible. Of course the ideal
is that L(n) = U(n) in which case we know F (n) but this is often not possible so
we must settle for something less precise10.

There are two further refinements we can make, we will consider the first one
here and the second one later on. In this course we are interested in putting

9A frequent error is to talk about the runtime of a mathematical function. This is meaningless
until we have chosen an algorithm to compute it and even then we are referring to the runtime
of the algorithm. In any case it can be proved that for most functions there is no algorithm to
compute them. (This is surprisingly easy given some fundamental notions.)

10In fact even when we know F explicitly we might be interested in bounding it from above and
below by functions that are easier to work with and are still close enough to F .

25

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

bounds on functions whose values are non-negative and what is of interest is to
bound the size of their values from above and below. So, e.g., if it so happens
that (unknown to us) F (n) = n it is not informative to produce the lower bound
�n10  F (n); anything negative is a lower bound. For this reason we amend (†) to

0  L(n)  F (n)  U(n) (‡)

for all large enough values of n. (An alternative is to take absolute values
throughout but this is notationally heavier and is essentially equivalent to our
approach.)

§2. Putting bounds on runtimes. Suppose we have an algorithm A. Recall that
we assume we have a method of assigning a size to the inputs of A such that for
a given size there are only finitely many possible inputs. Now let Rn denote the
set of runtimes that result by running A on all inputs of size n. (Of course this
set depends on A as well but we have not indicated this in the notation just to
keep it simple, no confusion can arise as we will only be considering A in the
discussion.) Since there are only finitely many inputs to A for any given n it
follows that Rn is a finite set and so it has a maximum and a minimum member.
Recall that we made the following definitions in the course:

(1) The worst case runtime of A is the function W : N! R defined by

W (n) = maxRn.

(2) The best case runtime of A is the function B : N! R defined by

B(n) = minRn.

(We are not terribly interested in the best case runtime except for illustrative
purposes.) It is trivially the case that

0  B(n)  W (n).

In other words B(n) is a lower bound for W (n) and of course W (n) is an upper
bound for B(n). However these can be too far apart to be of much use. For
example we saw that for linear search the best case runtime is a constant while
the worst case is proportional to n. You should also consider the best and worst
case runtimes of insertion sort, again they are far apart. Of course there are
algorithms for which B(n) is very close or even equal to W (n) and for these cases
it is a good lower bound to W (n). The point is that this is not even remotely
true of all of algorithms so we cannot use B(n) as a good lower bound to W (n)
automatically.

Now pick any r 2 Rn. By the definition of our two functions we have

B(n)  r  W (n).

Spelling this out, if we pick any input to A of size n and find the runtime then
this is an upper bound for the best case runtime and also a lower bound for the
worst case. Once again note the symmetry.

26

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

Let us now focus on W (n) for some fixed n. By definition, an upper bound U(n)
to W (n) is anything that satisfies

maxRn  U(n).

Note that we just demand a bound on a single element of the set Rn but as this
is the largest element it follows automatically that it is an upper bound to all
elements of Rn. So when putting an upper bound we are in fact just concerned
with one element of Rn but we don’t know its value. So how can we put an
upper bound on it? Well if we find that for all inputs of size n the runtime is
at most U(n) then of course this claim is also true of maxRn, i.e., of W (n). In
practice we consider a general input of size n and argue from the pseudocode
that the algorithm runtime will be at most a certain function of n (e.g., if we have
a loop that is executed at most n times and the body costs at most a constant c

then the cost of the entire loop is at most cn). This process leaves open the
possibility that we have overestimated by a significant amount so to check this
we look for lower bounds to W (n).

Let us now consider putting a lower bound on W (n). By definition a lower
bound L(n) to W (n) is anything that satisfies

0  L(n)  maxRn.

Once again our interest is in putting a bound on a single element of Rn. We could
do this by considering all inputs of size n but for most algorithms this would lead
to a severe under estimate (recall linear search). As observed above, if we find the
runtime r for any particular input of size n then we have found a lower bound
to maxRn, i.e., to W (n). So when trying to put a lower bound we look at the
structure of the algorithm and try to identify an input of size n that will make it
do the greatest amount of work.

There is now an asymmetry in what we do. However this arises from the
definition of the function which we seek to bound, not from the notion of upper
and lower bounds.

At this point you should consider what it means to put upper and lower
bounds on B(n). It should be clear that in putting a lower bound we consider all
inputs of size n but for an upper bound we need only consider a single appropri-
ate input of size n. In this second case we look at the structure of the algorithm
and and try to identify an input of size n that will make it do the least amount of
work. Thus the situation is a mirror symmetry of that for W (n).

§3. Asymptotic notation. We discussed above one refinement to the notion
of bounds. For the second refinement we allow the possibility of adjusting the
values of U and L by some strictly positive multiplicative constants, i.e., we focus
on growth rates. This can be for various reasons, e.g., the definition of F involves
unknown constants as in the case of runtimes of algorithms. So we amend the
inequalities (‡) in the definition to allow the use of constants c1 > 0 and c2 > 0 s.t.

0  c1L(n)  F (n)  c2U(n),

for all large enough values of n. Note that this says exactly the same as that
F = ⌦(L) and F = O(U). Once again we ask just how good are such bounds?

27

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

The best we could hope for is that L = U and if this is so then we say that
F = ⇥(U). Of course even if this is so we do not know the value of F (n), for
large enough n, because of the multiplicative constants but we do have a very
good idea of the growth rate. For the final time, the definitions of O and ⌦ are
entirely symmetrical, any asymmetry in arguments involving them comes from
the nature of the functions being studied.

Appendix B: Proof by Induction

§1. The most common version. This supplement gives a brief description of a
very useful and long established method of proof that we will rely on occasionally.
In addition, you can find many discussions of the method on the web (but beware
that some go into very exotic versions which we do not need for this course).

We often want to prove a statement about the natural numbers, examples
include:

(1) n < 2n for all n � 0.

(2) 0 + 1 + · · ·+ n = n(n+ 1)/2 for all n � 0.

(3) If the function f : N! N is defined by

f(n) =

(
0 for n = 0;

2f(n� 1) + 1 for n > 0,

then f(n) = 2n � 1 for all n � 0.

In each case we have a statement that is parametrised by a natural number n

and we often use a notation such as P (n) to stand for the statement being made
(this is just a matter of convenience so we don’t have to write the whole thing
out every time). Claiming that such a statement P (n) is true is claiming that
infinitely many things are true:

• P (0) is true and

• P (1) is true and

• P (2) is true and . . .

Sometimes we make our claim for all natural numbers starting from some num-
ber n0 onwards rather than 0. Wherever we start our claim, we call it the base
case.

How can we prove our claim (assuming it is indeed true)? Clearly it is no good
checking that P (0) holds, then that P (1) holds etc. Of course if any of these fail
to hold then the claim is false (and typically we do a few checks) but if it is indeed
true then we have infinitely many cases to check!

The task becomes possible by means of a simple and very powerful idea.

(1) Show that the base is true.

28

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

(2) Show that if the claim holds for n (where n is not fixed, it stands for any
number whatever that is at least as large as the base case) then it neces-
sarily holds for n+ 1.

These can be summarised as: (i) show that P (0) holds (or P (n0) if we are not
starting at 0) and (ii) show that P (n)) P (n + 1). The first task is referred to as
the base case and the second as the induction step. Note that in the induction
step we assume that P (n) holds and prove that under this assumption P (n + 1)
must also hold. The assumption referred to is called the induction hypothesis.

Establishing the induction step gives us the following guarantee. Let m be a
fixed natural number that is at least as large as the base case. The induction
step now tells us: “if you can prove (by whatever means) that the claim is true
for n = m then I guarantee that it is also true for n = m + 1.” So buy one get one
free; in fact we get much more. Let’s assume we have established both the base
case and the induction step. Then we have the following sequence of facts:

• The claim holds for n = 0, this is the base case that we proved.

• Since the claim holds for n = 0 the induction step now shows us that the
claim is also true for n = 1 (take n = 0 in the induction step proof).

• Since the claim holds for n = 1 the induction step now shows us that the
claim is also true for n = 2 (take n = 1 in the induction step proof).

• Since the claim holds for n = 2 the induction step now shows us that the
claim is also true for n = 3 (take n = 2 in the induction step proof).

• . . .

In other words the claim holds for all natural numbers (from the base case on-
wards).

Let us now return to the three examples above and see induction at work.

(1) n < 2n for all n � 0 (this claim is what we referred to above as P (n)).

Our base case is n = 0 and so we must check that 0 < 20 = 1 which is
clearly true. Now for the induction step: we must show that if the claim
holds for n then it also holds for n + 1. So suppose n < 2n; this is the
induction hypothesis. We must show that from this assumption it follows
that n+1 < 2n+1; this is the induction step. Now if n = 0 then we must prove
that 1 < 2 which is clearly true (we don’t need the induction hypothesis
for this special case). If n > 1 then we have n + 1  2n (just subtract n

form both sides). By the induction hypothesis we have that n < 2n and so
2n < 2 · 2n = 2n+1, so we have n+ 1  2n < 2n+1 and hence n+ 1 < 2n+1.

We did this example in the lectures but with the base case n = 1, i.e., we left
out the claim for n = 0 (because we were applying it to deduce the inequality
lg(n) < n and lg(0) is not defined).

(2) 0 + 1 + · · ·+ n = n(n+ 1)/2 for all n � 0.

29

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

For the base case we must check that 0 = 0(0 + 1)/2 which is clearly true.
so suppose the claim is true for n, we must show that it is then necessarily
true for n+ 1. Now

0 + 1 + · · ·+ n+ (n+ 1) = (0 + 1 + · · ·+ n) + (n+ 1)

= n(n+ 1)/2 + (n+ 1), by the induction hypothesis
= (n+ 1)(n/2 + 1)

= (n+ 1)(n+ 2)/2.

So if the summation formula holds for n then it also holds for n + 1, which
completes the proof of the induction step.

(3) If the function f : N! N is defined by

f(n) =

(
0 for n = 0;

2f(n� 1) + 1 for n > 0,

then f(n) = 2n � 1 for all n � 0.

Here the base case is f(0) = 20�1 = 1�1 = 0 which is true from the definition
of f . For the induction step we assume that f(n) = 2n � 1 and show that
then f(n+1) = 2n+1� 1. From the definition of f we have f(n+1) = 2f(n) + 1.
By the induction hypothesis, f(n) = 2n � 1 and so we have

f(n+ 1) = 2f(n) + 1

= 2(2n � 1) + 1

= (2n+1 � 2) + 1

= 2n+1 � 1.

This completes the proof of the induction step.

Warning: The base case is usually easy to prove (often amounting to a simple
check). Sometimes people new to induction overlook it altogether and focus on
the more difficult induction step. However unless the base case does indeed hold
then we cannot deduce anything about the truth of the claim. This should be
clear from the discussion above. It is perfectly possible for the induction step
to be true (i.e., as a logical implication P (n)) P (n + 1)) even though the base
is false and the claim is in fact false for all natural numbers. As an example
consider the function f defined above and suppose we make the (false) claim
that f(n) = 2n+1 � 1. The induction step assumes the claim for n and then for
n+ 1 we have f(n+ 1) = 2f(n) + 1 = 2(2n+1 � 1) + 1 = 2n+2 � 1 which is the formula
for n + 1. Of course there is no foundation from which to deduce any actual fact
about the values of f(n), all we have established is that if f(n) = 2n+1 � 1 then
f(n+ 1) = 2n+2 � 1 but the premise is just false!

A different pitfall is to establish the base case but make a subtle error in the
induction step, such as using the induction hypothesis for a case to which it
does not apply. For the uses of induction in this course you are unlikely to come
across such pitfalls but be aware of them, the moral is that it is necessary to be
careful about justifying the various steps.

30

Inf2B Algorithms and Data Structures Note 2 Informatics 2B (KK1.3)

§2. Variants. Sometimes we need to use more than one base case. In this situ-
ation we check all the base cases before going on to the induction step. In other
situations, in establishing the induction step we need to use the assumption that
the claim not only holds for n but for some (or possibly all) values up to n. This
happens if, e.g., the truth of P (n + 1) depends not only on that of P (n) but on
P (n�1) as well. This version is called strong induction but a little thought should
convince you that it is really the same idea as that discussed above.

Finally sometimes our claim is not made for all natural numbers but for some
infinite sequence, say n0, n1, n2, . . ., which we will call the relevant values (to the
claim). We can, if we like, say that P (0) is the claim for n0, P (1) is the claim for
n1 etc. In fact we can circumvent this by an induction step of the form: suppose
the claim is true for some relevant value n then it is necessarily true for the next
relevant value. The “strong” version assumes the claim is true for all relevant
values up to n then it is shown to be necessarily true for the next relevant value.

31

