
Inf2B Algorithms and Data Structures Note 2 Supplement Informatics 2B (KK1.2)

Putting bounds on functions and runtimes

§1. General setting. Consider a function F : N → R defined by some means.
Let’s note in passing that the definition does not fix any method of comput-
ing F (n) given n it simply fixes a unique value by appropriate conditions1. We
say that a function U : N → R is an upper bound for F if F (n) ≤ U(n) for all n.
Similarly a function L : N → R is a lower bound for F if L(n) ≤ F (n) for all n.
In many situations we don’t mind if the inequalities fail to hold for some initial
values as long as they hold for all large enough values of n (recall that this is
the same as saying that there is an n0 ∈ N such that the inequality holds for all
n ≥ n0). So with this situation a lower and upper bound give us the information
that

L(n) ≤ F (n) ≤ U(n) (†)

for all large enough values of n. Note that the definition of a lower bound is en-
tirely symmetrical to that of an upper bound, the only difference is the inequality.

There can be various reasons for wanting to find upper and lower bounds,
for us the main one is because although we have a precise definition of F we
cannot obtain an exact formula for it. If we have upper and lower bounds we are
of course interested in how good they are. To illustrate the point suppose we are
seeking to find information about some integer M . After some work we find that
0 ≤ M ≤ 1000000. This certainly gives us information but of a rather imprecise
nature because the lower and the upper bounds are very far apart. If we worked
a bit more and found that 12 ≤ M ≤ 20 we’d be in a better position. In terms of
functions we want L(n) and U(n) to be as close as possible. Of course the ideal
is that L(n) = U(n) in which case we know F (n) but this is often not possible so
we must settle for something less precise2.

There are two further refinements we can make, we will consider the first
one here and the second one later on. We are interested in putting bounds on
functions whose values are non-negative and what is of interest is to bound the
size of their values from above and below. So, e.g., if it so happens that (unknown
to us) F (n) = n it is not informative to produce the lower bound −n10 ≤ F (n);
anything negative is a lower bound. For this reason we amend (†) to

0 ≤ L(n) ≤ F (n) ≤ U(n) (‡)

for all large enough values of n. (An alternative is to take absolute values
throughout but this is notationally heavier and is essentially equivalent to our
approach.)

§2. Putting bounds on runtimes. Suppose we have an algorithm A. Recall that
we assume we have a method of assigning a size to the inputs of A such that for

1A frequent error is to talk about the runtime of a mathematical function. This is meaningless
until we have chosen an algorithm to compute it. In any case it can be proved that for most func-
tions there is no algorithm to compute them. (This is surprisingly easy given some fundamental
notions.)

2In fact even when we know F explicitly we might be interested in bounding it from above and
below by functions that are easier to work with and are still close enough to F .

1



Inf2B Algorithms and Data Structures Note 2 Supplement Informatics 2B (KK1.2)

a given size there are only finitely many possible inputs. Now let Rn denote the
set of runtimes that result by running A on all inputs of size n. (Of course this
set depends on A as well but we have not indicated this in the notation just to
keep it simple, no confusion can arise as we will only be considering A in the
discussion.) Since there are only finitely many inputs to A for any given n it
follows that Rn is a finite set. Recall that we made the following definitions in the
course:

(1) The worst case runtime of A is the function W : N→ R defined by

W (n) = maxRn.

(2) The best case runtime of A is the function B : N→ R defined by

B(n) = minRn.

(We are not terribly interested in the best case runtime except for illustrative
purposes.) It is trivially the case that

0 ≤ B(n) ≤ U(n).

In other words B(n) is a lower bound for U(n) and of course U(n) is an upper
bound for B(n). However these can be too far apart to be of much use. For
example we saw that of linear search the best case runtime is a constant while
the worst case is proportional to n. You should also consider the best and worst
case runtimes of insertion sort, again they are far apart. Of course there are
algorithms for which B(n) = W (n), the point is that this is not even remotely true
of all of them.

Now pick any r ∈ Rn. By the definition of our two functions we have

B(n) ≤ r ≤ W (n).

Spelling this out, if we pick any input to A of size n and find the runtime then
this is an upper bound for the best case runtime and also a lower bound for the
worst case. Once again note the symmetry.

Let us now focus on W (n) for some fixed n. By definition an upper bound U(n)
to W (n) is anything that satisfies

maxRn ≤ U(n).

Note that we just demand a bound on a single element of the set Rn but as this
is the largest element it follows automatically that it is an upper bound to all
elements of Rn. So when putting an upper bound we are in fact just concerned
with one element of Rn but we don’t know its value. So how can we put an
upper bound on it? Well if we find that for all inputs of size n the runtime is
at most U(n) then of course this claim is also true of maxRn, i.e., of W (n). In
practice we consider a general input of size n and argue from the pseudocode
that the algorithm runtime will be at most a certain function of n (e.g., if we have
a loop that is executed at most n times and the body costs at most a constant c

2



Inf2B Algorithms and Data Structures Note 2 Supplement Informatics 2B (KK1.2)

then the cost of the entire loop is at most cn). This process leaves open the
possibility that we have overestimated by a significant amount so to check this
we look for lower bounds to W (n).

Let us now consider putting a lower bound on W (n). By definition a lower
bound L(n) to W (n) is anything that satisfies

0 ≤ L(n) ≤ maxRn.

Once again our interest is in putting a bound on a single element of Rn. We could
do this by considering all inputs of size n but for most algorithms this would lead
to a severe under estimate (recall linear search). As observed above, if we find the
runtime r for any particular input of size n then we have found a lower bound
to maxRn, i.e., to W (n). So when trying to put a lower bound we look at the
structure of the algorithm and try to identify an input of size n that will make it
do the greatest amount of work.

There is now an asymmetry in what we do. However this arises from the
definition of the function which we seek to bound, not from the notion of upper
and lower bounds.

At this point you should consider what it means to put upper and lower
bounds on B(n). It should be clear that in putting a lower bound we consider all
inputs of size n but for an upper bound we need only consider a single appropri-
ate input of size n. In this second case we look at the structure of the algorithm
and and try to identify an input of size n that will make it do the least amount of
work. Thus the situation is a mirror symmetry of that for W (n).

§3. Asymptotic notation. We discussed above one refinement to the notion
of bounds. For the second refinement we allow the possibility of adjusting the
values of U and L by some strictly positive multiplicative constants, i.e., we focus
on growth rates. This can be for various reasons, e.g., the definition of F involves
unknown constants as in the case of runtimes of algorithms. So we amend the
inequalities (‡) in the definition to allow the use of constants c1 > 0 and c2 > 0 s.t.

0 ≤ c1L(n) ≤ F (n) ≤ c2U(n),

for all large enough values of n. Note that this says exactly the same as that
U = Ω(L) and F = O(U). Once again we ask just how good are such bounds?
The best we could hope for is that L = U and if this is so then we say that
F = Θ(U). Of course even if this is so we do not know the value of F (n), for
large enough n, because of the multiplicative constants but we do have a very
good idea of the growth rate. For the final time, the definitions of O and Ω are
entirely symmetrical, any asymmetry in arguments involving them comes from
the nature of the functions being studied.

3


