
Informatics 2A 2018–19

Tutorial Sheet 4 (Week 6)

Mary Cryan

This week’s exercises concern material from Lectures 13 and 14 on formal
languages.

1. Recall the grammar for mathematical regular expressions from last week’s
sheet:

RegExp → Atom | RegExp + RegExp | RegExp RegExp

| RegExp ∗ | (RegExp)

Atom → sym | ∅ | ε

Using methods from Lecture 13, construct an LL(1) grammar for the
language of regular expressions that is equivalent to the grammar given
earlier. Your grammar should embody the usual precedence conventions
for regular expressions: ∗ takes precedence over concatenation, which takes
precedence over +. (If you are in doubt as to whether your grammar is
LL(1), see whether you can construct a parse table for it.)

Hint: Use some of the ideas we exploited in building an unambiguous
(and also LL(1)) grammar for arithmetic expressions (Lecture 13).

2. The concrete syntax for Micro-Haskell (MH) types (see Lecture 14 and
Assignment 1) is specified by the LL(1)-grammar:

Type → Type0 TypeRest

TypeRest → ε | -> Type

Type0 → Integer | Bool | (Type)

with start symbol Type. The abstract syntax is specified by the grammar

Type → Integer | Bool | Type -> Type

(a) Write out the concrete parse tree for the type expression:

Integer -> Bool -> Integer

(b) Write out the abstract syntax tree that the above parse tree will be
converted to.

Consider the following grammar for an abstract syntax of arithmetic ex-
pressions (involving only the binary operations − and +).

Exp → n | Exp + Exp | Exp − Exp

where (as in the last tutorial) n stands for some lexical class of numeric
literals.

(c) Give an LL(1)-grammar for a corresponding concrete syntax of brack-
eted arithmetic expressions.

(d) Write out the concrete parse tree for the arithmetic expression:

10− 5− 4

(e) Write out the abstract syntax tree that the above parse tree should
be converted to.

(f) What difference arises in the process of translating concrete parse
trees to abstract syntax trees between the case of MH types and that
of arithmetic expressions? What is the origin of this difference?

3. Consider any context-free grammar G = (N,Σ, P, S) (where S ∈ N and
where P is some finite set of production rules X → α for X ∈ N and
α ∈ (Σ ∪N)∗).

We writeX ⇒∗ β if the right-hand side β ∈ (Σ∪N)∗ can be generated from
the non-terminal X ∈ N over any number (including 0) of applications
of the production rules. We write X ⇒+ β if β can be generated by a
strictly positive number of applications of the production rules (not 0).

The grammar G is said to be cycle-free if there is no non-terminal X such
that X ⇒+ X.

Give an algorithm to convert a given context-free grammar into an equiv-
alent grammar which is cycle-free.

