
Informatics 2A 2018–19

Tutorial Sheet 3 (Week 5)

Mary Cryan

This week’s exercises cover the basics of context-free grammars, pushdown
automata, LL(1) grammars and predictive parsing (Lectures 9–12).

Question 4 (on constructing parse tables) represents perhaps the most techni-
cally demanding topic of the entire course, and needs the material from Lecture
12 (Friday 12th Oct). You should make sure you are comfortable with the ideas
in Question 3 before attempting Question 4.

Throughout this sheet, we use n to stand for some lexical class of numeric
literals, numeric literals being items like 5 or 23. The precise definition of this
class is not relevant to these exercises.

1. In this question, ideas from the course turn and bite their own tail. We
consider a context-free grammar for the (mathematical) language of reg-
ular expressions!

Fix some alphabet Σ. The terminals of our grammar will be the symbols

sym ∅ ε + ∗ ( )

where sym denotes the lexical class consisting of symbols from Σ. (Note
that ε is an actual symbol here, in contrast to ε which denotes the empty
string.) There are two nonterminals: RegExp (the start symbol) and Atom.
The productions are as follows:

RegExp → Atom | RegExp + RegExp | RegExp RegExp

| RegExp ∗ | (RegExp)

Atom → sym | ∅ | ε
Note that this grammar represents (as is often done in practice) the con-
catenation of regular languages by juxtaposition of regular expressions,
instead of using an explicit infix ‘.’ operation.

In Lecture 5, we gave the following mathematical definition of the language
L(e) associated with a regular expression e.

• L(∅) = ∅, L(ε) = {ε}, L(a) = {a} (a ∈ Σ)

• L(α+ β) = L(α) ∪ L(β)

• L(αβ) = L(α) .L(β)

• L(α∗) = L(α)∗

Strictly speaking, what L operates on here is not just a regular expression
e in textual form, but a particular syntax tree for e: we need to know how
e is parsed in order to make sense of L(e).

(a) Give an example of a ‘harmless’ ambiguity arising from the above
grammar; i.e., an ambiguous string for which alternative syntax trees
all give rise to the same regular language. Draw two different syntax
trees for this string.



(b) Give an example of a ‘harmful’ ambiguity; i.e., a string for which
different syntax trees describe different regular languages. Draw two
syntax trees for the string that do indeed describe different regular
languages.

2. An NPDA (Q,Σ,Γ, s,∆) (as defined in the Lecture 9 slides) is said to
be real-time deterministic if it has no ε-transitions, and for every q ∈ Q,
a ∈ Σ, x ∈ Γ there is at most one pair (q′, β) with ((q, a, x), (q′, β)) ∈ ∆.
1 When working with deterministic PDAs, it is usual to assume the input
alphabet Σ includes a special end-of-input symbol $ which is required to
occur at the end of every input string (and nowhere else).

Design real-time deterministic PDAs that accept the following languages,
using acceptance by empty stack.

(a) The language {anbn | n ≥ 0}. (Hint: have two control states for
the NPDA (often in class examples, we’ve had just a single control
state).)

(b) The set of well-matched bracket sequences involving two kinds of
brackets: (. . . ) and [. . . ]. For example, [ ( [ ] ( ) ) ] is a well-matched
sequence, while ( [ ) ] is not.

3. Consider the following grammar for generating arithmetic expressions such
as ( n ∗ n ∗ n).

Terminals: (, ), ∗, n
Nonterminals: Exp, Ops

Productions: Exp → n Ops | (Exp )

Ops → ε | ∗ n Ops

Start symbol: Exp

Convince yourself that this is in fact an LL(1) grammar, and that its parse
table is

( ) ∗ n $
Exp (Exp ) n Ops
Ops ε ∗ n Ops ε

(Here, for example, the top left entry (Exp ) stands for the production
Exp → (Exp ).)

(a) Using this table, apply the LL(1) parsing algorithm to the input

( n ∗ n )

At each step, show the operation applied, the input string remaining,
and the stack state, as in the example on Lecture 11, Slide 9.

1The reason for the adjective “real-time” is that the standard notion of deterministic PDA
is more general by allowingε-transitions in certain circumstances, see, e.g., Chapter F of Kozen.



(b) For each of the following three input strings, explain how and where
an error arises in the course of the LL(1) parsing algorithm. In each
case, suggest an error message that an LL(1) parser could reasonably
issue to the author of the input string.

( ) n ) n ∗

(c) The grammar in this question is unnaturally restrictive. For example,
it does not admit the string ( n ∗ n ) ∗ n. Design an LL(1) grammar
that recognises the full language of arithmetic expressions such as
( n ∗ n ) ∗ (n ∗ n ∗ (n ∗ n)); i.e., the language of arithmetic expres-
sions involving just ∗ and n, but allowing unrestricted (well-matched)
bracketing.

4. Consider the following grammar for generating boolean conditions such as
n + − n ∗ n == n.

Terminals: n, +, ∗, −, ==

Nonterminals: Cond, Exp, TimesExp, OptMinus, TimesOps, PlusOps

Productions: Cond → Exp == Exp

Exp → TimesExp PlusOps

TimesExp → OptMinus n TimesOps

OptMinus → ε | −
TimesOps → ε | ∗ n TimesOps

PlusOps → ε | + TimesExp PlusOps

Start symbol: Cond

(a) Identify the set of nonterminals from which the empty string can be
derived.

(b) Calculate the First sets for each of the nonterminals in the grammar.

(c) Calculate the Follow sets for each of the nonterminals in the gram-
mar.

(d) Using this information, try to build a parse table for the grammar.
Is the grammar LL(1) or not?


