1. Three subsets of \(\{p, q, r\} \) suffice:

The best way to produce this is to start with the DFA start state \(\{p\} \), and then explore the result of applying \(a \) and \(b \) transitions to states so far constructed, until no new DFA states (i.e. subsets of \(\{p, q, r\} \)) arise.

2. The NFAs given here are the 'simplest possible' – however, many other choices of regular expressions would be equally reasonable.

(a) NFA:

Regular Expression: \((a + \epsilon)(ba)^*(b + \epsilon)\)

(b) NFA:

Regular Expression: \((a + b)^*(aa + bb)(a + b)^*\)

(c) NFA:
Regular Expression: \((a + b)^* abba(a + b)^*\)

(d) NFA:

Regular Expression: \(Z(\epsilon + a(ZbZa)^*)Z\), where \(Z = (b + c)^*\)

(e)

Actually would accept the same language, but I wouldn’t regard it as following the structure of the regular expression.

(f)

(g) or
[Note that ϵ is the only string accepted.]

3. The minimized DFA is:

Please obtain this using the algorithm presented in Lecture 5. I have suggested inserting the separating strings discovered by the algorithm into the chart, rather than just ticks. In this case, the resulting chart will look like this:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>ϵ</th>
<th>$a \cdot b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_2</td>
<td></td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_3</td>
<td>b</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_4</td>
<td>b</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_5</td>
<td>ϵ</td>
<td>ϵ</td>
<td>ϵ</td>
<td>ϵ</td>
</tr>
<tr>
<td>q_6</td>
<td>ϵ</td>
<td>ϵ</td>
<td>ϵ</td>
<td>ϵ</td>
</tr>
</tbody>
</table>

Notice that the ϵ entries get added in 'Round 0' of the algorithm, the b entries in Round 1, and the ab entry in Round 2, when we detect a pair which goes under a to a pair that already has a b entry.

As an aside, the minimal DFA can also be obtained in an ad hoc way by observing the following.

- States q_5 and q_6 may be collapsed, since any string takes us from either of these to an accepting state.
- States q_2,q_3 and q_4 may all be collapsed, since the strings that takes us from these to an accepting state are those matching $a^*b(a+b)^*$.
- Any other pair of states are differentiated by their behaviour on at least one of the strings: a, ϵ, b, ab.

4. (a) Different: 01 is in $L((0+1)^*)$ but not $L(0^*+1^*)$.

(b) The same: by the third identity with $a = 1$, $b = 20$,

$$(120)^*1 = 1(201)^*$$
where $0(120)^*12 = 01(201)^*2$

(c) Different: 0 is in $L((0^*1)^*)$ but not $L((0^*1)^*)$.

(d) The same: $(01 + 0)^*0$

$= (0(1 + \epsilon))^*0$ by second identity and '$a\epsilon = a$'.

$= 0((1 + \epsilon)0)^*$ by third identity.

$= 0(10 + 0)^*$ by first identity and '$\epsilon a = a$'.

5. (a) The required language is X_p, where
\[
X_p = aX_p + bX_q \quad (1)
\]
\[
X_q = (a + b)X_q + \epsilon \quad (2)
\]
Solving these:
- $X_q = (a + b)^*$ from (2) by Arden’s rule
- $X_p = aX_p + b(a + b)^*$ substituting in (1)
- $X_p = a^*b(a + b)^*$ by Arden’s rule.

(b) The required language is X_p, where
\[
X_p = bX_p + aX_q + \epsilon \quad (3)
\]
\[
X_q = bX_p + aX_r \quad (4)
\]
\[
X_r = (a + b)X_q \quad (5)
\]
Solving these:
- $X_q = bX_p + a(a + b)X_q$ substituting (3) in (2)
- $X_q = (a(a + b))^*bX_p$ by Arden’s rule
- $X_p = bX_p + a(a + b)^*bX_p + \epsilon$ substituting in (1)
- $= (b + a(a + b)^*b)X_p + \epsilon$ by distributivity law
- $= (b + a(a + b)^*b)^*$ by Arden’s rule.

6. (a) The DFA has 21 states in all (I won’t draw it here). There are 16 states corresponding to all possible scorelines x/y where $x,y \in \{0, 15, 30, 40\}$. (Except that the state for 40/40 is known as Deuce.) The start state is 0/0. The transitions between the above states are as expected, e.g. from 15/30 there is an f-transition to 30/30 and an m-transition to 15/40.

There is also state ‘Advantage Federer’ with an f-transition from Deuce and an m-transition to Deuce. There is a state ‘Game Federer’ with f-transitions from the states 40/0, 40/15, 40/30 and Advantage Federer. Similarly on Murray’s side, except that ‘Game Murray’ is designated as an accepting state.

Finally, there should also be a ‘garbage state’ which we enter (and stay in) if input symbols continue after a game has been completed.

(b) This DFA is not minimal. The main thing to note is that the states 40/30 and Advantage Federer can be identified: from either of these states, f would take us to Game Federer and m would take us to Deuce. Likewise, 30/40 and Advantage Murray can be identified.

Less interestingly, we can identify Game Federer with the garbage state (but this is just a consequence of our biased decision only to accept wins by Murray).

(c) Yes, an entire tennis match can indeed be modelled using a DFA.

One can build such a DFA in a hierarchical way. First, we can model a set as a sequence of games (say F for Game Federer, M for Game Murray), and build a DFA over \{F, M\} to process complete sets. We
then refine this by replacing each state along with its F and M transitions by (essentially) a complete copy of the DFA constructed in (a), or by a suitably adapted version of this if a tiebreak is required. This gives a DFA that processes complete sets at the level of individual points. Repeating the process, we now build a DFA that models a complete match at the level of sets, and then insert lots of copies of the DFA for a single set to obtain a DFA for a complete match at the level of points.