Informatics 2A 2018-19
Tutorial Sheet 1 (Week 3)

MARY CRYAN

This week’s tutorial is devoted to the ‘pure theory’ of regular languages. The
relevant lectures are numbers 3, 4 and 5. Next week’s tutorial will cover some
applications of this theory.

Please attempt the first five questions in advance of tutorials. Whilst all
of these cover material it is important to understand, you should especially
prioritize questions 1, 3 and 5. Don’t spend too long on any one question. If
you get stuck, go on to the next.

An optional Question 6 is included for those who like tennis.

1.

Use the subset construction from Lectures 3, 4 to convert the following
NFA into an equivalent DFA. You need only include in your NFA those
states that are reachable from the initial state.

a / N\ b
@@/

Give both an NFA and a regular expression for each of the following lan-
guages. Try to keep the number of states in your NFAs as small as possible.

(a) (Over {a,b}.) The set of strings in which a and b alternate: that is,
strings not containing aa or bb consecutively.

(b) (Over {a,b}.) The set of strings that do contain aa or bb consecu-
tively. (This is the complement of the language in part (a).)

(¢) (Over {a,b}.) The set of strings that contain the consecutive se-
quence abba.

(d) (Over {a,b,c}.) The set of strings in which between any two occur-
rences of a, there must be at least one occurrence of b.

Construct NFAs (possibly with e-transitions) corresponding to the follow-
ing regular expressions. The construction of your NFAs should broadly
follow the structure of the regular expressions as indicated in the lectures,
though you may omit e-transitions that you can see to be superfluous.

(e) (a® +0b")"
(£) (((aa)*bb) + ab)*
(8) 0

. Use the algorithm from Lecture 5 to minimize the DFA below.



You may do this as in the lectures, inserting a tick into the triangular
grid each time you discover a pair of states that must be kept separate.
Alternatively, instead of inserting a tick, you could insert an example of a
string separating the two states which the algorithm has ‘discovered’ (see
Lecture 4, Slide 33). Doing this may help your understanding of why the
algorithm works.

. (Adapted from Kozen.) Convince yourself intuitively that the following
identities are valid for regular expressions. Recall that an equality o = 3
between regular expressions means that the equality of languages L(«) =
L(53) holds.

(a+B)y = ay+pBy
a(f+7) = af+ay
(@f)’a = a(fa)’
Consider the regular languages over {0, 1,2} denoted by the following pairs
of regular expressions. In each case, say whether the two languages are
equal or not. If they are, use the above laws (plus any other laws from

Lecture 6 that you may require) to prove the equivalence. If they are not,
give an example of a string that is in one language but not the other.

(a) (04 1)* and 0* 4+ 1*

(b) 0(120)*12 and 01(201)*2

(¢) (0*1*)* and (0*1)*

(d) (01+0)*0 and 0(10 + 0)*

. Convert each of the following DFAs into a regular expression, by using

Arden’s rule to solve a system of simultaneous equations as indicated in
Lecture 6.

(a)

- b
(v) |
—() b (q) :b ()



6. (Optional.) In this question we’ll consider a finite-state model for an
ordinary game of singles tennis (not a tiebreak). If you're needing to
brush up on the scoring system for tennis, try this:

https://en.wikipedia.org/wiki/Tennis_scoring_system

The players are Federer and Murray, and Federer is serving. We’ll model
a game simply as a string over the alphabet {f,m}, where f means ‘point
to Federer’ and m means ‘point to Murray’.

(a) Construct a DFA that accepts precisely those strings in { f, m}* that
correspond to complete games won by Murray. Your DFA should
have a state for each possible scoreline that can occur: e.g. 30-15;
Deuce.

(b) Is your DFA minimal? If not, which states may be identified? (Do
this part just by inspection—I don’t recommend applying the algo-
rithm from lectures to your DFA!)

(¢) Now consider an entire tennis match (with up to five sets, and in-
cluding tiebreaks as necessary) as a sequence of points in this way.
Would it be possible to construct a DFA in this style that accepts
precisely those sequences that correspond to a complete match won
by Murray?



