
Inf2a: Lab 1

Introduction to Python

This short overview of Python. A more comprehensive tutorial for Python 2.6
can be found online at:

http://docs.python.org/2.6/tutorial/

That tutorial offered by Python.org contains more on control statements, func-
tions and their definitions, data structures, modules, classes and the Python
library.

1 Interpreter

In this session we will launch the Python interpreter and directly execute com-
mands in the terminal window. Python is an interpreted language, so one of
its great advantages is the ability to launch an interpreter in this way. This
can save a lot of time when you are developing software: when you are not sure
about something, you can often test it directly from the interpreter, without
the overhead of having a small program to launch from command line. The
interpreter is launched by typing the following command in the shell:

python

This launches the default version of Python on DICE (version 2.6). Once python
has been launched, lines previously inserted in the interpreter shell can be re-
called by pressing the ↑ cursor button. (The ← and → cursor buttons also
work as expected to move backwards and forwards through the characters in
the current line.) To exit the interpreter, type <CTRL>+D

In Python, formatting has meaning - this means the spacing is very impor-
tant. Groups of statements are indented under a header. Blocks of code are
nested by increasing the indentation. There are no end-of-line symbols (like the
semicolon; in Java or C). Instead, newline marks the end of a line.
Below we will introduce you to the basic types.

? In this lab, type the lines introduced by >>> and by ... Cutting and pasting
whole sections will disrupt the formatting and will not work.

1



1.1 Basic Types

1.1.1 Numbers

Python can be used as a simple calculator. Expression syntax is straightfor-
ward: the operators +, -, * and / work just like in most other languages.

? Enter the following expressions in the Python interpreter you have just launched:

>>> 2+2

>>> 3*2

>>> 2 + 7.3

1.1.2 Strings

Strings can be enclosed in single or double quotes:

>>> ’hello’

>>> ’how\’s it going?’

>>> "how’s it going?"

>>> ’This is "strange"’

If a string is enclosed in a pair of triple quotes, either """ or ’’’, it retains
whatever formatting is found between them — for example:

>>> """

... This is a string that when

... printed maintains its format

... and its end of lines.

... """

>>> print """

... This is a string that when

... printed maintains its format

... and its end of lines.

... """

Strings can be concatenated using the + operator, and can be repeated with the
operator *:

>>> ’Hello ’ + ’, ’ + ’how are you’

>>> ’help’ + ’!’*5

The individual characters of a string can be accessed using indices. For example
the first character has index 0. Substrings can be specified with slice notation,
two indices separated by colon. When using slices, indices can be thought of as
pointing between characters, instead of pointing to characters: the left edge of
the first character is 0 and so on.

The following commands illustrate this with the help of a user-defined variable
called word. Take care when you name your variables not to use reserved words.
For a list of these, look here:
http://docs.python.org/2/reference/lexical_analysis.html#keywords.

2



>>> word="hello"

>>> word[0]

>>> word[2]

>>> word[0:2]

>>> word[2:5]

>>> word[:2]

>>> word[2:]

Negative indices start counting from the right end.

>>> word[-1]

>>> word[-2:]

Strings cannot be modified once they are created. Trying to modify a substring
results in an error. However, it is easy to create a new string by concatenating
substrings from other strings.

1.1.3 Lists

There are different types of compound structures in Python. The most versatile
is the list.

>>> L = [’monday’,’tuesday’,’wednesday’,’thursday’,’friday’]

>>> L

Like strings, list items can also be accessed using indices. Similarly, they can
be sliced and concatenated:

>>> L[0]

>>> L[3]

>>> L[1:]

>>> L[:2]

>>> L[1:3]

>>> L + [’saturday’,’sunday’]

One can verify the membership of an element to a list using the keyword in.

>>> ’wednesday’ in L

>>> ’sunday’ in L

Items can be added at the end of a list using the append(item) method of the
list object.

>>> L3 = []

>>> L3.append(1)

>>> L3.append(2)

>>> L3

It is possible to measure the length of a list using the built-in function len(list).

>>> len(L)

3



It is also possible to create nested lists:

>>> L1 = [1, 2, 3]

>>> L2 = [’one’,L1,’two’]

>>> L2

◦ insert(i,x) inserts the item x at position i.

>>> L2 = [’a’,’b’,’d’,’e’]

>>> L2.insert(1,’c’)

>>> L2

◦ remove(x) removes the first item in the list whose value is x.

>>> L2.remove(’d’)

>>> L2

◦ pop() returns (and removes) the last item in the list; likewise, pop(i) returns
and removes the item in position i.

>>> L2.pop()

>>> L2

◦ sort() sorts the items of the list, in place.

>>> L2.sort()

>>> L2

◦ reverse() reverses the elements of the list, in place.

>>> L2.reverse()

>>> L2

◦ del can be used to remove items from a list using the index. It can also be
used to remove slices from a list.

>>> del L2[1:3]

>>> L2

You can iterate over a list retrieving the index and the value at the same time
using the enumerate(list) function.

>>> for i, v in enumerate([’a’,’b’,’c’,’d’]):

... print i, v

...

1.1.4 Boolean Types

The Boolean type is named bool; it takes any Python value and converts it to
True or False.

>>> bool(1)

>>> bool(0)

>>> bool([1])

>>> bool([])

4



1.1.5 Tuples

A tuple is composed by a number of values separated by commas, and enclosed
by parentheses.

>>> T = (1,2,’three’)

>>> T

>>> T[2]

Tuples can be nested.

>>> T1 = (1,2,(3,5))

>>> T1

Tuples, like strings, are immutable and cannot be changed once created. If you
try, you will get an error message.

>>> s = "hello"

>>> s[1] = "u"

>>> T1[2] = 3

1.1.6 Dictionaries

Dictionaries are very useful structures. They are indexed by keys, unlike lists
which are indexed by indices. The keys can be any immutable objects (numbers,
strings, tuples - you cannot use lists, which are mutable).

A dictionary can be seen an unordered set of key:value pairs, with the constraint
that keys need to be unique. The main operations performed on dictionaries
are storing and retrieving values by their keys.

>>> num = {’one’:1, ’two’:2, ’three’:3, ’four’:4}

>>> num[’three’]

>>> num

You can easily add a new item to the dictionary:

>>> num[’five’] = 5

>>> num

You can delete one item from the dictionary using the built in function del(item):

>>> del(num[’three’])

>>> num

To list all the keys from a dictionary, you use the method keys(). To check if
a key belongs to the dictionary you use the method has_key():

>>> num.has_key(’one’)

>>> num.keys()

You can iterate over a dictionary, retrieving the keys and their corresponding
values using the method iteritems():

>>> for k, v in num.iteritems():

... print k,v

...

5



1.2 Modules

Programs can become long, and it is a good approach to divide them into more
manageable units. In Python, programs can be divided into modules. The
modules can be imported directly into the interpreter or into other programs.
Python has a wide library of predefined functions and classes that can be im-
ported and used.

>>> import math

To call a function imported in a module, it must be prefixed with the module
name, to avoid name conflicts. (N.B. The function math.ceil(x) below returns
as a float, the smallest integer greater than or equal to x.)

>>> math.pi

>>> math.ceil(2.35)

We can also import only the functions we need. If we do this, it is not necessary
to prefix them with the module name.

>>> from math import ceil

>>> ceil(2.35)

dir(modulename) will return a list of names defined in the module. If you
modify a module, you need to reload it using reload(modulename).

1.2.1 Pattern Matching

The re module provides tools for regular expressions.

>>> import re

◦ match(pattern, string) if zero or more characters at the beginning of
string match the regular expression pattern, it returns a corresponding MatchObject
instance. It returns None if the string does not match the pattern. For a guide
to writing regular expressions in machine syntax, see the slides for Informatics
2A Lecture 6.

>>> re.match("(aa|bb)+", "aabbaa")

>>> re.match("(aa|bb)+", "abba")

◦ findall(pattern, string) returns a list of all non-overlapping matches of
pattern in string.

>>> re.findall("[a-z]*th[a-z]*", "I think this is the right one")

◦ sub(pattern, repl, string) returns the string obtained by replacing the
leftmost non-overlapping matches of pattern in string by the replacement
repl.

>>> re.sub("[a-z]*th[a-z]*", "TH-word", "I think this is the right one" )

? End your interpreter session using <CTRL>+D.

6



2 Text Editors

In the rest of this lab we will use the types explained above. You may find it
useful to refer back.

From here on we will use Python scripts rather than using the interpreter di-
rectly. Launch your preferred editor (emacs, vim, gedit,...) in the background
(using &). If you need further advice on using an editor try an emacs tutorial
such as the one within emacs itself: type ”C-h t” (control-h, t) within emacs.

Remember: in Python, formatting has meaning - this means the spacing is very
important. Groups of statements are indented under a header. Blocks of code
are nested by increasing the indentation. There are no end-of-line symbols (like
the semicolon; in Java or C). Instead, newline marks the end of a line.

? Before lauching Python, open a terminal window and create a new directory
called “MyPython”:

mkdir MyPython

? Go to this directory:

cd MyPython

2.1 Control Structures

Python offers the usual control flow statements, as do other languages like Java
or C. The for loop is more powerful than in most of the other languages.

At this point you might want to write the commands as a program in an editor
(such as emacs, vim or gedit), so that you can easily modify the lines in case of
errors. You can then execute the program from the shell.

For example, to open the emacs editor, type the following command from the
shell:

emacs program_name.py &

Then write your program in the editor. To save the program, press <CTRL>+X

and then <CTRL>+C. This will prompt you to save the file. Press ’y’. This will
take you back to shell.

To launch your program, type the following command from the shell:

python program_name.py

Now we will consider the python control structures if, while and for.

7



2.1.1 If Statement

? Using an editor, create a file binary.py containing the following lines:

x=raw_input("Enter a binary sequence : ")

if (x[0] == ’0’):

print "Starts with 0"

elif (x[0] == ’1’):

print "Starts with 1"

else:

print "Error: Not a binary number!"

? After saving the file <CTRL>+X and then <CTRL>+S, launch it from the shell.

python binary.py

? When asked, insert a binary sequence (such as 00101 or 10010)

It is possible to create more complex conditions using the keyword and for
conjunction and the keyword or for disjunction – e.g.

if (x[0] == ’0’ or x[0] == ’1’):

print "Starts with " + x[0]

else:

print "Error: Not a binary number!"

2.1.2 While

? Using the editor create a file downtoone.py. Type the following lines.

x = 10

while (x > 0):

print x

x = x - 1

? Save the file and then launch the program from the shell.

2.1.3 For Loop

The for statement iterates over the items of any sequence (such as strings or
lists), using the keyword in discussed earlier.

? Using an editor, create a file printlist.py . Type the following lines.

L = [’monday’,’tuesday’,’wednesday’,’thursday’,’friday’]

for x in L:

print x

? Save the file and then launch the program from the shell.

8



To iterate over a sequence of numbers, the built-in function range() can be
used to automatically generate the sequence:

? Re-enter the python interpreter and type in the following lines.

>>> range(5)

>>> range(5,10)

? Using an editor, create a file printnumbers.py. Type the following lines.

for x in range(10):

print x

? Save the file and then launch the program from the shell.
You can write an if statement nested inside a for statement as follows, which
prints the even numbers less than 10. Remember that nesting is indicated by
increased indentation.

? Using an editor, create a file printevennumbers.py and enter the following
lines, where % is the “modulo” operator.

for x in range(10):

if (x%2 == 0):

print x

? Save the file and then launch the program from the shell.

2.2 Functions

A function is introduced by the keyword def, followed by the function name and
by its list of parameters in parentheses. The statements that form the function
body start on the next line, and are indented. The first line can optionally
be a string that describes the function. This string can be used by automatic
generators of documentation.

You can either type the code in the interpreter or alternatively type it as a
program and execute it from shell.

>>> def square(value):

... """Returns the square value of the value"""

... return value*value

...

>>> square(4)

9



3 Exercises

EXERCISE 1

Create a regular expression that checks if a string starts with 3 binary digits
(and test it: 010asda must be recognised, while 1aa must be rejected)

Using a regular expression, write a python statement that finds all the words
that end with “ly” in strings (and test it, for example using the sentence
"it is likely to happen rarely")

Using a regular expression, write a python statement that replaces all the words
that start with “wh” by “WH-word” (and test it, for example in the sentence
"who should do what?")

EXERCISE 2

Write a program that, for every element in the list
[’how’, ’why’, ’however’, ’where’, ’never’]

prints:

• a star symbol ‘*’

• the first two letters from the element (its 2-character prefix)

• the whole element

i.e. producing something like:

* ho how

* wh why

...

EXERCISE 3

Modify the previous program to print a star (‘*’) in front of the elements that
start with the prefix “wh” and a hyphen ‘-’ in front of the others, producing
something like:

- ho how

* wh why

...

EXERCISE 4

Write a function checkPrefix(list, prefix) in the python interpreter. This
function should wrap the loop created in Exercise 2. When the function is called,
it should print the contents of list, adding a star in front of those elements
that start with the two-character prefix in prefix. Check what happens when
checkPrefix is given an empty list.

10



EXERCISE 5

Using an editor, create a new file and type in the function checkPrefix(list,prefix).
Save the file as “checker.py” in your “MyPython” directory. Then import your
module in the python interpreter and call the function.

11


