
Undecidability
Informatics 2A: Lecture 31

Mary Cryan

School of Informatics
University of Edinburgh
mcryan@inf.ed.ac.uk

28 November 2018

1 / 17

mcryan@inf.ed.ac.uk


Recap: Turing machines

finite
control

..... .....a b 5 $ −3ca:

read, write,
move L/R

I If |Σ| ≥ 2, any kind of ‘finite data’ can be coded up as a string
in Σ∗, which can then be written onto a Turing machine tape.
(E.g. natural numbers could be written in binary.)

I According to the Church-Turing thesis (CTT), any
‘mechanical computation’ that can be performed on finite
data can be performed in principle by a Turing machine.

I Any decent programming language (and even Micro-Haskell!)
has the same computational power in principle as a Turing
machine.

2 / 17



Universal Turing machines

Consider any Turing machine with input alphabet Σ.

Such a machine T is itself specified by a finite amount of
information, so can in principle be ‘coded up’ by a string T ∈ Σ∗.
(Details don’t matter).

So one can imagine a universal Turing machine U which:

I Takes as its input a coded description T of some TM T ,
along with an input string s, separated by a blank symbol.

I Simulates the behaviour of T on the input string s.
(N.B. a single step of T may require many steps of U.)
I If T ever halts (i.e. enters final state), U will halt.
I If T runs forever, U will run forever.

If we believe CTT, such a U must exist — but in any case, it’s
possible to construct one explicitly.

3 / 17



The concept of a general-purpose computer

Alan Turing’s discovery of the existence of a universal Turing
machine (1936) was in some sense the fundamental insight that
gave us the general-purpose (programmable) computer.

In most areas of life, we have different machines for different jobs.
So it’s quite remarkable that a single physical machine can be
persuaded to perform as many different tasks as a computer can
. . . just by feeding it with a cunning sequence of 0’s and 1’s!

4 / 17



The halting problem

The universal machine U in effect serves as a recognizer for the set

{T s | T halts on input s}

But is there also a machine V that recognizes the set

{T s | T doesn’t halt on input s} ?

If there were, then given any T and s, we could run U and V in
parallel, and we’d eventually get an answer to the question
“does T halt on input s?”

Conversely, if there were a machine that answered this question,
we could construct a machine V with the above property.

Theorem: There is no such Turing machine V !
In other words, the halting problem is undecidable.

5 / 17



Proof of undecidability

Why is the halting problem undecidable?

Suppose V existed. Then we could easily make a Turing machine
W that recognised the set L defined by:

L = {s ∈ Σ∗ | the TM coded by s runs forever on the input s}

(W could construct the string s s, then run as V on it.)

Now consider what W does when given the string W as input.
That is, the input to W is the string that encodes W itself.

I W acceptsW iff W runs forever onW (since W recognises L)

I but W acceptsW iff W halts onW (definition of acceptance)

Contradiction!!! So V can’t exist after all!

6 / 17



Precursor: Russell’s paradox (1901)

Define R to be the set of all sets that don’t contain themselves:

R = {S | S 6∈ S}

Does R contain itself, i.e. is R ∈ R?

Conclusion: no such set R exists.

Russell’s analogy: The village barber shaves exactly those men in
the village who don’t shave themselves. Does the barber shave
himself, or not?

Conclusion: no man exists in the village with the property proposed
by Russell.

Highly recommended reading: Scooping the Loop Snooper by
Geoffrey Pullum. (A proof that the Halting Problem is undecidable,
written in verse in the style of Dr. Seuss).

7 / 17



Precursor: Russell’s paradox (1901)

Define R to be the set of all sets that don’t contain themselves:

R = {S | S 6∈ S}

Does R contain itself, i.e. is R ∈ R?

Conclusion: no such set R exists.

Russell’s analogy: The village barber shaves exactly those men in
the village who don’t shave themselves. Does the barber shave
himself, or not?

Conclusion: no man exists in the village with the property proposed
by Russell.

Highly recommended reading: Scooping the Loop Snooper by
Geoffrey Pullum. (A proof that the Halting Problem is undecidable,
written in verse in the style of Dr. Seuss).

7 / 17



Precursor: Russell’s paradox (1901)

Define R to be the set of all sets that don’t contain themselves:

R = {S | S 6∈ S}

Does R contain itself, i.e. is R ∈ R?

Conclusion: no such set R exists.

Russell’s analogy: The village barber shaves exactly those men in
the village who don’t shave themselves. Does the barber shave
himself, or not?

Conclusion: no man exists in the village with the property proposed
by Russell.

Highly recommended reading: Scooping the Loop Snooper by
Geoffrey Pullum. (A proof that the Halting Problem is undecidable,
written in verse in the style of Dr. Seuss).

7 / 17



Precursor: Russell’s paradox (1901)

Define R to be the set of all sets that don’t contain themselves:

R = {S | S 6∈ S}

Does R contain itself, i.e. is R ∈ R?

Conclusion: no such set R exists.

Russell’s analogy: The village barber shaves exactly those men in
the village who don’t shave themselves. Does the barber shave
himself, or not?

Conclusion: no man exists in the village with the property proposed
by Russell.

Highly recommended reading: Scooping the Loop Snooper by
Geoffrey Pullum. (A proof that the Halting Problem is undecidable,
written in verse in the style of Dr. Seuss).

7 / 17



Decidable vs. semidecidable sets

In general, a set S (e.g. ⊆ Σ∗) is called decidable if there’s a
mechanical procedure which, given s ∈ Σ∗, will always return a
yes/no answer to the question “Is s ∈ S?”.
E.g. the set {s | s represents a prime number} is decidable.

We say S is semidecidable if there’s a mechanical procedure which
will return ‘yes’ precisely when s ∈ S (it isn’t obliged to return
anything if s 6∈ S).

Semidecidable sets coincide with recursively enumerable (=Type 0)
languages as defined in lectures 28–9.

The halting set {T s | T halts on input s} is an example a
semidecidable set that isn’t decidable. So there exist Type 0
languages for which membership is undecidable.

8 / 17



Separating Type 0 and Type 1

Every Type 1 (context-sensitive) language is decidable.
(The argument was outlined in Lecture 29.)

As we have seen, the halting set

{T s | T halts on input s}

is an undecidable Type 0 language.

So the halting set is an example of a Type 0 language that is not a
Type 1 language.

(Last lecture, we saw another example: the set of provable
sentences of FOPL. This too is an undecidable Type 0 language.)

9 / 17



Undecidable problems in mathematics

The existence of ‘mechanically unsolvable’ mathematical problems
was in itself a major breakthrough in mathematical logic: until
about 1930, some people (the mathematician David Hilbert in
particular) hoped there might be a single killer algorithm that
could solve all mathematical problems!

Once we have one example of an unsolvable problem (the halting
problem), we can use it to obtain others — typically by showing
“the halting problem can be reduced to problem X.”
(If we had a mechanical procedure for solving X, we could use it to
solve the halting problem.)

10 / 17



Example: Provability of theorems

Let M be some reasonable (consistent) formal logical system for
proving mathematical theorems (something like Peano arithmetic
or Zermelo-Fraenkel set theory).

Theorem: The set of theorems provable in M is semidecidable (and
hence is a Type 0 language), but not decidable.

Proof: Any reasonable system M will be able to prove all true statements

of the form “T halts on input s”. So if we could decide M-provability, we

could solve the halting problem.

Corollary (Gödel): However strong M is, there are mathematical
statements P such that neither P nor ¬P is provable in M.

Proof: Otherwise, given any P we could search through all possible

M-proofs until either a proof of P or of ¬P showed up. This would give

us an algorithm for deciding M-provability.

11 / 17



Example: Diophantine equations

Suppose we’re given a set of simultaneous equations involving
polynomials in several variables with integer coefficients. E.g.

3xy + 4z + 5wx2 = 27

x2 + y3 − 9z = 4

w5 − z4 = 31

x2 + y2 + z2 − w2 = 2536427

Hilbert’s 10th Problem (1900): Is there a mechanical procedure for
determining whether a set of polynomial equations has an integer
solution?

Matiyasevich’s Theorem (1970): It is undecidable whether a given
set of polynomial equations has an integer solution.

(By contrast, it’s decidable whether there’s a solution in real
numbers!)

12 / 17



Another example: Post correspondence problem
Given two finite sets S ,T of strings, decide whether or not there’s
a string that can be formed both as a concatenation of strings in S
and as a concatenation of strings in T .

E.g. suppose

S = {a, ab, bba} , T = {baa, aa, bb}

Then the answer is YES, because:

bba.ab.bba.a = bbaabbbaa = bb.aa.bb.baa

In general, however, it’s undecidable whether such a string exists
for a given S ,T .

There are also examples from formal language theory itself.
E.g. given two context-free grammars G1,G2, it’s undecidable
whether L(G1) ∩ L(G2) is context-free.

13 / 17



Bonus Topic: Higher-Order Computability

In one sense, all reasonable prog. langs are equally powerful. E.g.

I They can compute the same class of functions Z ⇀ Z. (In
Micro-Haskell, these have type Integer->Integer).

I Any language can be implemented in any other. (E.g. you’ve
implemented MH in Java.)

Indeed, there’s only one reasonable mathematical class of
‘computable’ functions Z ⇀ Z (the Turing-computable functions).

But what about higher-order functions, e.g. of type
((Integer->Integer)->Integer)->Integer ?

I What does it mean for a function of this kind to be
‘computable’?

I Are all reasonable languages ‘equally powerful’ when it comes
to higher-order functions?

14 / 17



Case study: iteration vs. recursion

Many tasks that involve ‘looping’ can be accomplished using either
iteration or recursion. E.g. to compute the factorial function:

fac(n) { fac(n) {
int m = 1 ; if n == 0

for i = 1 to n return 1

m = m * i ; else

return m return fac(n-1) * n

} }

Just a matter of style? Or is there a deeper difference?

Consider the MH program:

G : (Integer -> Integer -> Integer) -> Integer -> Integer

G f n = f n (G f (n+1))

(Informally, G f 0 = f 0 (f 1 (f 2 (...))).)

Theorem (Berger 1999, JL 2015). The 2nd order function G can’t
be computed by ‘iteration alone’: recursion is essential here.

15 / 17



Recursions at higher types

That definition again:
G : (Integer -> Integer -> Integer) -> Integer -> Integer

G f n = f n (G f (n+1))

The thing we’re defining recursively here is really G f.

So for G, or indeed for factorial, we only need ‘recursion at type
Integer->Integer’. Is this all the recursion we ever need?

Let’s write MHk for the sublanguage of MH where we only allow
recursions at types of order ≤ k . So MH1 ⊆ MH2 ⊆ · · · ⊆ MH.

All of these languages are Turing-complete, i.e. they yield the same
computable functions of type Integer->Integer. But they differ
in the higher-order functions that they can compute:

Theorem (JL 2015). For every k , there are higher-order functions
computable in MHk+1 but not in MHk .

16 / 17



That’s it folks!

That concludes the course syllabus.

On Friday 28th, Shay and I will present a joint revision lecture, in
which we shall discuss:

I the exam structure

I examinable material

I pointers to UG3 (and upwards) Informatics courses that
continue from this one

17 / 17


	Universal Turing machines
	The halting problem
	Undecidable problems

