
Complexity and Character of Human Languages
Informatics 2A: Lecture 25

Shay Cohen

19 November 2018

1 / 18

Compositional Semantics: example

S[λx .love(x ,Kim)(Sam)⇒β love(Sam,Kim)]

NP[Sam]

NPR[Sam]

Sam

VP[λy .λx .love(x , y)(Kim)⇒β λx .love(x ,Kim)]

TV[λy .λx .love(x , y)]

loves

NP[Kim]

NPR[Kim]

Kim

2 / 18

Last Class: Adding Determiners to Semantics

Grammar III

S → NP VP { NP.Sem(VP.Sem) } t
VP → TV NP { TV.Sem(NP.Sem) } < e, t >
NP → Sam { λP.P(Sam) } << e, t >, t >
NP → Det Nom { Det.Sem(Nom.Sem) } << e, t >, t >
Det → a { λQ.λP.∃x .Q(x) ∧ P(x) } << e, t >,<< e, t >, t >>>
Det → every { λQ.λP.∀x .Q(x)⇒ P(x) } << e, t >,<< e, t >, t >>>
Nom → N { N.Sem } < e, t >
Nom → A Nom { λx .Nom.Sem(x)&A.Sem(x) } < e, t >
TV → loves { {λR.λz.R(λw . loves(z,w))} <<< e, t >, t >,< e, t >>
N → woman { λz.woman(z) } < e, t >
A → tall { λz.tall(z) } < e, t >

Can add similar entries for ‘student’, ‘computer’, ‘has access to’.

3 / 18

Example

The semantics for ‘every student has access to a computer’.

every student (λQ.λP.∀x .Q(x)⇒ P(x))(λx .student(x))
→β λP. ∀x . student(x)⇒ P(x)

a computer (λQ.λP. ∃x .Q(x) ∧ P(x))(λx .computer(x))
→β λP. ∃x . computer(x) ∧ P(x)

h.a.t. a computer · · · →β · · ·
→β λz .∃x . computer(x) ∧ h a t(z , x)

(whole sentence)· · · →β · · ·
→β ∀x . student(x)⇒ ∃y . computer(y) ∧ h a t(x , y)

Note: In the last β-step, we’ve renamed ‘x’ to ‘y’ to avoid capture.

4 / 18

Example

The semantics for ‘every student has access to a computer’.

every student (λQ.λP. ∀x .Q(x)⇒ P(x))(λx .student(x))
→β λP. ∀x . student(x)⇒ P(x)

a computer (λQ.λP. ∃x .Q(x) ∧ P(x))(λx .computer(x))
→β λP. ∃x . computer(x) ∧ P(x)

h.a.t. a computer · · · →β · · ·
→β λz .∃x . computer(x) ∧ h a t(z , x)

(whole sentence)· · · →β · · ·
→β ∀x . student(x)⇒ ∃y . computer(y) ∧ h a t(x , y)

Note: In the last β-step, we’ve renamed ‘x’ to ‘y’ to avoid capture.

4 / 18

Example

The semantics for ‘every student has access to a computer’.

every student (λQ.λP. ∀x .Q(x)⇒ P(x))(λx .student(x))
→β λP. ∀x . student(x)⇒ P(x)

a computer (λQ.λP. ∃x .Q(x) ∧ P(x))(λx .computer(x))
→β λP. ∃x . computer(x) ∧ P(x)

h.a.t. a computer · · · →β · · ·
→β λz .∃x . computer(x) ∧ h a t(z , x)

(whole sentence)· · · →β · · ·
→β ∀x . student(x)⇒ ∃y . computer(y) ∧ h a t(x , y)

Note: In the last β-step, we’ve renamed ‘x’ to ‘y’ to avoid capture.

4 / 18

Example

The semantics for ‘every student has access to a computer’.

every student (λQ.λP. ∀x .Q(x)⇒ P(x))(λx .student(x))
→β λP. ∀x . student(x)⇒ P(x)

a computer (λQ.λP. ∃x .Q(x) ∧ P(x))(λx .computer(x))
→β λP. ∃x . computer(x) ∧ P(x)

h.a.t. a computer · · · →β · · ·
→β λz .∃x . computer(x) ∧ h a t(z , x)

(whole sentence)· · · →β · · ·
→β ∀x . student(x)⇒ ∃y . computer(y) ∧ h a t(x , y)

Note: In the last β-step, we’ve renamed ‘x’ to ‘y’ to avoid capture.

4 / 18

Example

The semantics for ‘every student has access to a computer’.

every student (λQ.λP. ∀x .Q(x)⇒ P(x))(λx .student(x))
→β λP. ∀x . student(x)⇒ P(x)

a computer (λQ.λP. ∃x .Q(x) ∧ P(x))(λx .computer(x))
→β λP. ∃x . computer(x) ∧ P(x)

h.a.t. a computer · · · →β · · ·
→β λz .∃x . computer(x) ∧ h a t(z , x)

(whole sentence)· · · →β · · ·
→β ∀x . student(x)⇒ ∃y . computer(y) ∧ h a t(x , y)

Note: In the last β-step, we’ve renamed ‘x’ to ‘y’ to avoid capture.

4 / 18

Example

The semantics for ‘every student has access to a computer’.

every student (λQ.λP. ∀x .Q(x)⇒ P(x))(λx .student(x))
→β λP. ∀x . student(x)⇒ P(x)

a computer (λQ.λP. ∃x .Q(x) ∧ P(x))(λx .computer(x))
→β λP. ∃x . computer(x) ∧ P(x)

h.a.t. a computer · · · →β · · ·
→β λz .∃x . computer(x) ∧ h a t(z , x)

(whole sentence)· · · →β · · ·
→β ∀x . student(x)⇒ ∃y . computer(y) ∧ h a t(x , y)

Note: In the last β-step, we’ve renamed ‘x’ to ‘y’ to avoid capture.

4 / 18

Semantics: Things to Think About

Why is it λy , x .loves(x , y) and not λx , y .loves(x , y)?

Given two types of the three types (for a parent node and two
children nodes), how do we determine the third one?

How did we determine the type of “every” through type
raising? What does Q and P mean in its definition?

How can we change variable names to make the handling of
scope easier when using β-reduction?

5 / 18

Recap: The Chomsky hierarchy

Context−sensitive

Context−free

Regular

Recursively enumerable

Where exactly do human languages fit within this

complexity hierarchy?

6 / 18

Recap: The Chomsky hierarchy

Context−sensitive

Context−free

Regular

Recursively enumerable

Where exactly do human languages fit within this

complexity hierarchy?

6 / 18

Infinity and languages

How ‘complex’ are human languages?

The potential infiniteness of language has been recognized for
centuries (by Galileo, Descartes, von Humboldt...)

There is no longest sentence!

Mary thinks that John thinks that George thinks that Mary thinks
that this course is boring!
I woke up and had a coffee and got dressed and checked facebook
and walked in the park and ate lunch . . .

7 / 18

Is Natural Language Regular?

Of course, many infinite languages are regular, e.g. {an|n ≥ 0} is
regular. But what about natural languages?

E.g. Is English a regular language?

Challenge: How can we even answer the question, given that we
don’t have a complete mathematical ‘definition’ of English? (And
anyway, English is ‘fuzzy at the edges’.)

Fortunately, we don’t need one. Just need to agree that certain
sentences are definitely in, and certain others are definitely out.

We can then show that no regular language includes all the former,
but excludes all the latter.

Tools:

Pumping Lemma

Intersection property: If L and L′ are regular then so is L ∩ L′.
(Hence if L is regular but L ∩ English isn’t regular, then
English can’t be regular.)

8 / 18

Is Natural Language Regular?

Of course, many infinite languages are regular, e.g. {an|n ≥ 0} is
regular. But what about natural languages?

E.g. Is English a regular language?

Challenge: How can we even answer the question, given that we
don’t have a complete mathematical ‘definition’ of English? (And
anyway, English is ‘fuzzy at the edges’.)

Fortunately, we don’t need one. Just need to agree that certain
sentences are definitely in, and certain others are definitely out.

We can then show that no regular language includes all the former,
but excludes all the latter.

Tools:

Pumping Lemma

Intersection property: If L and L′ are regular then so is L ∩ L′.
(Hence if L is regular but L ∩ English isn’t regular, then
English can’t be regular.)

8 / 18

Is Natural Language Regular?

Of course, many infinite languages are regular, e.g. {an|n ≥ 0} is
regular. But what about natural languages?

E.g. Is English a regular language?

Challenge: How can we even answer the question, given that we
don’t have a complete mathematical ‘definition’ of English? (And
anyway, English is ‘fuzzy at the edges’.)

Fortunately, we don’t need one. Just need to agree that certain
sentences are definitely in, and certain others are definitely out.

We can then show that no regular language includes all the former,
but excludes all the latter.

Tools:

Pumping Lemma

Intersection property: If L and L′ are regular then so is L ∩ L′.
(Hence if L is regular but L ∩ English isn’t regular, then
English can’t be regular.)

8 / 18

Is English Regular?

Centre-embedding

[The cat1 likes tuna fish1].
[The cat1 [the dog2 chased2] likes tuna fish1].
[The cat1 [the dog2 [the rat3 bit3] chased2] likes tuna fish1].

Consider L = {(the N)n TVm likes tuna fish | n,m ≥ 0}
where N = { cat, dog, rat, elephant, kangaroo . . . }

TV = { chased, bit, admired, ate, befriended . . . }

Clearly L is regular. However, L ∩ English is the language

{(the N)n TVn−1 likes tuna fish | n ≥ 1}

Can use pumping lemma to show L is not regular.

Assumption 1. “(the N)n TVm likes tuna fish” is ungrammatical
for m 6= n − 1.
Assumption 2. “(the N)n TVn−1 likes tuna fish” is grammatical
for all n ≥ 1. (Is this reasonable? You decide!)

9 / 18

Is English Regular?

Centre-embedding

[The cat1 likes tuna fish1].
[The cat1 [the dog2 chased2] likes tuna fish1].
[The cat1 [the dog2 [the rat3 bit3] chased2] likes tuna fish1].

Consider L = {(the N)n TVm likes tuna fish | n,m ≥ 0}
where N = { cat, dog, rat, elephant, kangaroo . . . }

TV = { chased, bit, admired, ate, befriended . . . }

Clearly L is regular. However, L ∩ English is the language

{(the N)n TVn−1 likes tuna fish | n ≥ 1}

Can use pumping lemma to show L is not regular.

Assumption 1. “(the N)n TVm likes tuna fish” is ungrammatical
for m 6= n − 1.
Assumption 2. “(the N)n TVn−1 likes tuna fish” is grammatical
for all n ≥ 1. (Is this reasonable? You decide!)

9 / 18

Are natural languages context-free?

Are context-free grammars sufficient for modelling NL grammar?
Or are there aspects of NLs that they can’t capture?

How would we know if there were such aspects? Again, there are
tools for showing a language isn’t context-free:

Context-free pumping lemma (Lecture 29). Using this, we can
show (for example) that

{anbmcndm | n,m ≥ 0}

is not context-free.

Intersection property: If L is regular and L′ is context-free,
then L ∩ L′ is context-free.
(Idea: can ‘combine’ an NPDA for L′ with an NFA for L to get
an NPDA for L ∩ L′.)

Note in passing that the intersection of two context-free languages
needn’t be context-free. (Above trick doesn’t work: only allowed
one stack!)

10 / 18

Non-context-freeness in natural languages

In Swiss German, some verbs (e.g. let, paint) take an object in
accusative form, while others (e.g. help) take an object in dative
form. The nouns are case-marked even in subordinate clauses,
which in Swiss-German, can exhibit cross-serial dependencies.

Cross-serial dependencies

. . . das mer d’chind em Hans es huus lönd hälfe aastriiche

. . . that we the children Hans the house let help paint
NP-ACC NP-DAT NP-ACC V-ACC V-DAT V-ACC

. . . that we let the children help Hans paint the house

11 / 18

Non-context-freeness in natural languages

In Swiss German, some verbs (e.g. let, paint) take an object in
accusative form, while others (e.g. help) take an object in dative
form. The nouns are case-marked even in subordinate clauses,
which in Swiss-German, can exhibit cross-serial dependencies.

Cross-serial dependencies

. . . das mer d’chind em Hans es huus lönd hälfe aastriiche

. . . that we the children Hans the house let help paint
NP-ACC NP-DAT NP-ACC V-ACC V-DAT V-ACC

. . . that we let the children help Hans paint the house

11 / 18

Back to question: Is Natural Language Context Free?

Claim 1. Swiss German subordinate clauses can have a structure
in which all the Vs follow all the NPs.

Claim 2. Among such sentences, those with all dative NPs
preceding all accusative NPs, and all dative-subcategorizing Vs
preceding all accusative-subcategorizing Vs are acceptable.

Claim 3. The number of Vs requiring dative objects must equal
the number of dative NPs and similarly for accusatives.

Claim 4. An arbitrary number of Vs can occur in a subordinate
clause. (cf. similar claim in our proof of English context-freeness)

12 / 18

Back to question: Is Natural Language Context Free?

Claim 1. Swiss German subordinate clauses can have a structure
in which all the Vs follow all the NPs.

Claim 2. Among such sentences, those with all dative NPs
preceding all accusative NPs, and all dative-subcategorizing Vs
preceding all accusative-subcategorizing Vs are acceptable.

Claim 3. The number of Vs requiring dative objects must equal
the number of dative NPs and similarly for accusatives.

Claim 4. An arbitrary number of Vs can occur in a subordinate
clause. (cf. similar claim in our proof of English context-freeness)

12 / 18

Back to question: Is Natural Language Context Free?

Claim 1. Swiss German subordinate clauses can have a structure
in which all the Vs follow all the NPs.

Claim 2. Among such sentences, those with all dative NPs
preceding all accusative NPs, and all dative-subcategorizing Vs
preceding all accusative-subcategorizing Vs are acceptable.

Claim 3. The number of Vs requiring dative objects must equal
the number of dative NPs and similarly for accusatives.

Claim 4. An arbitrary number of Vs can occur in a subordinate
clause. (cf. similar claim in our proof of English context-freeness)

12 / 18

Back to question: Is Natural Language Context Free?

Claim 1. Swiss German subordinate clauses can have a structure
in which all the Vs follow all the NPs.

Claim 2. Among such sentences, those with all dative NPs
preceding all accusative NPs, and all dative-subcategorizing Vs
preceding all accusative-subcategorizing Vs are acceptable.

Claim 3. The number of Vs requiring dative objects must equal
the number of dative NPs and similarly for accusatives.

Claim 4. An arbitrary number of Vs can occur in a subordinate
clause. (cf. similar claim in our proof of English context-freeness)

12 / 18

Back to question: Is Natural Language Context Free?

Claim. Swiss-German is not context-free.

Sketch of proof. Represent dative NPs, accusative NPs,
dative-subcategorizing Vs, and accusative-subcategorizing Vs by
symbols A, B, C , and D, respectively.
Then among all constructions of the form A∗B∗C ∗D∗, the
grammatically acceptable ones are exactly those of the form
AnBmCnDm.
So intersecting Swiss German with a suitable regular language
yields the set of strings AnBmCnDm.

But this language is known not to be context-free. Since
context-free languages are closed under intersection with regular
languages, Swiss-German can’t be context-free either!

13 / 18

Back to question: Is Natural Language Context Free?

Claim. Swiss-German is not context-free.

Sketch of proof. Represent dative NPs, accusative NPs,
dative-subcategorizing Vs, and accusative-subcategorizing Vs by
symbols A, B, C , and D, respectively.
Then among all constructions of the form A∗B∗C ∗D∗, the
grammatically acceptable ones are exactly those of the form
AnBmCnDm.
So intersecting Swiss German with a suitable regular language
yields the set of strings AnBmCnDm.

But this language is known not to be context-free. Since
context-free languages are closed under intersection with regular
languages, Swiss-German can’t be context-free either!

13 / 18

Review

Chomsky Hierarchy: classifies languages on scale of complexity:

Regular languages: those whose phrases can be ‘recognized’
by a finite state machine.

Context-free languages: those describable via ‘context-free
rules’ X → β, where X ∈ N and β ∈ (N ∪ Σ)∗.
Many aspects of PLs and NLs can be described at this level;

Context-sensitive languages: those describable via
‘context-sensitive rules’ αXγ → αβγ.
More than enough for all known features of FLs and NLs.
(E.g. typing/scoping rules in PLs; Swiss-German crossing
dependencies.)

Recursively enumerable languages: all languages that can in
principle be defined via mechanical rules.

14 / 18

Strong and Weak Adequacy

Questions about the formal complexity of language are about the
computational power of syntax, as represented by a grammar
that’s adequate for it.

A strongly adequate grammar

generates all and only the strings of the language;

assigns them the “right” structures — e.g. ones that allow us
to compute a correct representation of meaning (as in
previous lecture).

A weakly adequate grammar

generates all and only the strings of a language but doesn’t
necessarily give a correct (insightful) account of their structures.

15 / 18

Weaker examples

Swiss-German ‘crossing dependencies’ are non-context-free in a
very strong sense: no CFG is even weakly adequate for modelling
them.
There are other phenomena that in theory could be modelled using
CFGs, though it seems unnatural to do so. E.g. a versus an in

English.
a banana an apple
a large apple an exceptionally large banana

Over-simplifying a bit: a before consonants, an before vowels.

In theory, we could use a context-free grammar:
NP → a NP1c NP → an NP1v

NP1c → Nc | APc NP1 NP1v → Nv | APv NP1
APc → Ac | Advc AP APv → Av | Advv AP

But more natural to use context-sensitive rules, e.g.
DET [c-word] → a [c-word]
DET [v-word] → an [v-word]

16 / 18

Between ‘context-free’ and ‘context-sensitive’

Linear indexed grammars (LIGs) are a formalism more powerful
than CFGs, but much less powerful than an arbitrary CSGs. Think
of them as mildly context sensitive grammars. These seem to
suffice for NL phenomena.

Definition

An indexed grammar has three disjoint sets of symbols: terminals,
non-terminals and indices.

An index is a stack of symbols that can be passed from the LHS of
a rule to its RHS, allowing counting and recording what rules were
applied in what order. So think of LIGs as CFGs where a little bit
of ‘context information’ may be passed down to subphrases.

17 / 18

Summary

We can argue quite rigorously about the complexity of NLs,
even without having a complete ‘definition’ of any NL.

NLs make frequent use of nested structures, which can be
used to show they can’t be regular.

Some NLs contain constructs which (in a strong sense)
surpass the power of context-free grammars.

Many NLs contain features that could in theory be modelled
by CFGs, but are in practice better treated in some other way.

NLs appear to surpass the power of context-free languages,
but only just. E.g. the mild form of context-sensitivity
captured by LIGs seems at least weakly adequate for NL
structures.

18 / 18

	Are natural languages regular?
	Are natural languages context-free?
	A glimpse at context-sensitive languages

