
Computing Natural Language Semantics
Informatics 2A: Lecture 26

Shay Cohen

16 November 2018

1 / 29



Semantic Composition
Review: compositionality, lambda expressions, and logical forms
Examples
Type raising

Semantic (Scope) Ambiguity
Definition
Semantic Scope
Approaches to Scope Ambiguity

2 / 29



Compositionality

How do we create FOL for sentences in a compositional manner?
Through their syntactic tree.

Each node in the tree will have a lambda expression associated
with it (or a logical form). That expression has a “type” – it is
sometimes easier to think in terms of “what type a node should
be,” instead of “what formula it should have.”

Roadmap: (1) simple case of statements such as “John loves
Mary.” (2) how do we tackle sentences such as “John loves a tall
woman?” (3) how do we tackle sentences such as “Every man
loves a woman?”

3 / 29



Compositionality

Compositionality: The meaning of a complex expression is a
function of the meaning of its parts and of the rules by which they
are combined.

Do we have sufficient tools to systematically compute meaning
representations according to this principle?

I The meaning of a complete sentence will hopefully be a FOPL
formula, which we consider as having type t (truth values).

I But the meaning of smaller fragments of the sentence will
have other types. E.g.

has a bone < e, t >
every dog << e, t >, t >

I The idea is to show how to associate a meaning with such
fragments, and how these meanings combine.

I To do this, we need to extend our language of FOPL with λ
expressions (λ = lambda; written as \ in Haskell).

4 / 29



Lambda (λ) Expressions

λ-expressions are an extension to FOPL that allows us to work
with ‘partially constructed’ formulae. A λ-expression consists of:

I the Greek letter λ, followed by a variable (formal parameter);

I a FOPL expression that may involve that variable.

λx .sleep(x) : < e, t >
‘The function that takes an entity x to the statement sleep(x)’

(λx .sleep(x))︸ ︷︷ ︸
function

(Kim)︸ ︷︷ ︸
argument

: t

A λ-expression can be applied to a term.
(The above has the same truth value as sleep(Kim).)

5 / 29



Lambda expressions can be nested. We can use nesting to create
functions of several arguments that accept their arguments one at
a time.

λy .λx . love(x,y) : < e, < e, t >>
‘The function that takes y to
(the function that takes x to the statement love(x,y))’

λz .λy .λx . give(x,y,z) : < e, < e, < e, t >>>
‘The function that takes z to
(the function that takes y to
(the function that takes x to the statement give(x,y,z)))’

6 / 29



Beta Reduction
When a lambda expression applies to a term, a reduction operation
(beta (β) reduction) can be used to replace its formal parameter
with the term and simplify the result. In general:

(λx .M)N ⇒β M[x 7→ N] (M with N substituted for x)

(λx .sleep(x))︸ ︷︷ ︸
function

(Kim)︸ ︷︷ ︸
argument

⇒β sleep(Kim)

(λy .λx .love(x , y))︸ ︷︷ ︸
function

(crabapples)︸ ︷︷ ︸
argument

⇒β λx .love(x , crabapples)

(λx .love(x , crabapples))︸ ︷︷ ︸
function

(Kim)︸ ︷︷ ︸
argument

⇒β love(Kim, crabapples)

7 / 29



Making λ Expressions Concrete

I Consider the question “Who is the CEO of Microsoft?”

I A possible semantic interpretation of it:
λx .CEO(x ,Microsoft)

I In addition, we have a large database of CEOs, in relations of
the form CEO(Nadella,Microsoft), CEO(Cook,Apple), etc.

I Given the above λ expression, we can apply it on all entities in
the database and check its truth value (i.e. whether in our
model of the world, as reflected by the database, the CEO
relation holds between the entity and Microsoft).

8 / 29



Plan for Today

We will describe three grammars for representing natural language
semantics

Grammar I: basic grammar that can describe propositions on
entities such as “Sam loves Kim”

Grammar II: slightly improved, where we will allow propositions on
general nouns that can be described using adjectives. Noun phrases
will not be compositional

Grammar III: another improvement, where we will allow quantifiers
(such as “every”) and compositional nouns

Things to think about (a lot of moving parts in this class!): (a)
what is the type of a node? (b) How does the λ expression for a
node reflect that type?

9 / 29



Compositional Semantics: the key idea

Grammar I
S → NP VP {VP.Sem(NP.Sem)} t
VP → TV NP {TV.Sem(NP.Sem)} < e, t >
NP → NPR {NPR.Sem} e
TV → loves {λy.λx.love(x,y)} < e, < e, t >>
NPR → Kim {Kim} e
NPR → Sam {Sam} e

I To build a compositional semantics for NL, we attach
valuation functions to grammar rules (semantic attachments).

I These show how to compute the interpretation of the LHS of
the rule from the interpretations of its RHS components.

I For example, VP.Sem(NP.Sem) means apply the
interpretation of the VP to the interpretation of the NP.

I Types have been added to ease understanding.

10 / 29



Compositional Semantics: example

S[λx .love(x ,Kim)(Sam)⇒β love(Sam,Kim)]

NP[Sam]

NPR[Sam]

Sam

VP[λy .λx .love(x , y)(Kim)⇒β λx .love(x ,Kim)]

TV[λy .λx .love(x , y)]

loves

NP[Kim]

NPR[Kim]

Kim

11 / 29



Compositional Semantics: example

S[λx .love(x ,Kim)(Sam)⇒β love(Sam,Kim)]

NP[Sam]

NPR[Sam]

Sam

VP[λy .λx .love(x , y)(Kim)⇒β λx .love(x ,Kim)]

TV[λy .λx .love(x , y)]

loves

NP[Kim]

NPR[Kim]

Kim

11 / 29



Compositional Semantics: example

S[λx .love(x ,Kim)(Sam)⇒β love(Sam,Kim)]

NP[Sam]

NPR[Sam]

Sam

VP[λy .λx .love(x , y)(Kim)⇒β λx .love(x ,Kim)]

TV[λy .λx .love(x , y)]

loves

NP[Kim]

NPR[Kim]

Kim

11 / 29



Compositional Semantics: example

S[λx .love(x ,Kim)(Sam)⇒β love(Sam,Kim)]

NP[Sam]

NPR[Sam]

Sam

VP[λy .λx .love(x , y)(Kim)⇒β λx .love(x ,Kim)]

TV[λy .λx .love(x , y)]

loves

NP[Kim]

NPR[Kim]

Kim

11 / 29



Compositional Semantics: example

S[λx .love(x ,Kim)(Sam)⇒β love(Sam,Kim)]

NP[Sam]

NPR[Sam]

Sam

VP[λy .λx .love(x , y)(Kim)⇒β λx .love(x ,Kim)]

TV[λy .λx .love(x , y)]

loves

NP[Kim]

NPR[Kim]

Kim

11 / 29



Compositional Semantics: example

S[λx .love(x ,Kim)(Sam)⇒β love(Sam,Kim)]

NP[Sam]

NPR[Sam]

Sam

VP[λy .λx .love(x , y)(Kim)⇒β λx .love(x ,Kim)]

TV[λy .λx .love(x , y)]

loves

NP[Kim]

NPR[Kim]

Kim

11 / 29



A minor variation

The following alternative semantics assigns the same overall
meaning to sentences. Only the treatment of the arguments of
‘love’ is different.

Grammar I
S → NP VP {VP.Sem(NP.Sem)} t
VP → TV NP {λx.TV.Sem(x)(NP.Sem)} < e, t >
NP → NPR {NPR.Sem} e
TV → loves {λx.λy.love(x,y)} < e, < e, t >>
NPR → Kim {Kim} e
NPR → Sam {Sam} e

12 / 29



Compositional Semantics, continued

What about the interpretation of an NP other than a proper
name? The FOPL interpretation should often contain an
existential (∃) or a universal (∀) quantifier:

Sam has access to a computer.
∃x(computer(x) ∧ have access to(Sam, x))

Every student has access to a computer.
∀x(student(x)→ ∃y(computer(y) ∧ have access to(x , y)))

Can we build such interpretations up from their component
parts in the same way as with proper names?

13 / 29



A halfway stage.

Grammar II
S → NPR VP { VP.Sem(NPR.Sem) } t
VP → TV a Nom { λx .∃y .Nom.Sem(y) & < e, t >

TV.Sem(y)(x) }
Nom → N { N.Sem } < e, t >
Nom → A Nom { λx .Nom.Sem(x) & A.Sem(x) } < e, t >
NPR → Sam { Sam } e
TV → loves { λy .λx .love(x , y) } < e, < e, t >>
N → woman { λz .woman(z) } < e, t >
A → tall { λz .tall(z) } < e, t >

I Note we haven’t given a meaning here to a tall woman.

I Could take this to have the same meaning as tall woman.

I This would be fine for this example (also in Assignment 2).
But what about every tall woman?

14 / 29



A halfway stage.

Grammar II
S → NPR VP { VP.Sem(NPR.Sem) } t
VP → TV a Nom { λx .∃y .Nom.Sem(y) & < e, t >

TV.Sem(y)(x) }
Nom → N { N.Sem } < e, t >
Nom → A Nom { λx .Nom.Sem(x) & A.Sem(x) } < e, t >
NPR → Sam { Sam } e
TV → loves { λy .λx .love(x , y) } < e, < e, t >>
N → woman { λz .woman(z) } < e, t >
A → tall { λz .tall(z) } < e, t >

I Note we haven’t given a meaning here to a tall woman.

I Could take this to have the same meaning as tall woman.

I This would be fine for this example (also in Assignment 2).
But what about every tall woman?

14 / 29



A halfway stage.

Grammar II
S → NPR VP { VP.Sem(NPR.Sem) } t
VP → TV a Nom { λx .∃y .Nom.Sem(y) & < e, t >

TV.Sem(y)(x) }
Nom → N { N.Sem } < e, t >
Nom → A Nom { λx .Nom.Sem(x) & A.Sem(x) } < e, t >
NPR → Sam { Sam } e
TV → loves { λy .λx .love(x , y) } < e, < e, t >>
N → woman { λz .woman(z) } < e, t >
A → tall { λz .tall(z) } < e, t >

I Note we haven’t given a meaning here to a tall woman.

I Could take this to have the same meaning as tall woman.

I This would be fine for this example (also in Assignment 2).
But what about every tall woman?

14 / 29



A halfway stage.

Grammar II
S → NPR VP { VP.Sem(NPR.Sem) } t
VP → TV a Nom { λx .∃y .Nom.Sem(y) & < e, t >

TV.Sem(y)(x) }
Nom → N { N.Sem } < e, t >
Nom → A Nom { λx .Nom.Sem(x) & A.Sem(x) } < e, t >
NPR → Sam { Sam } e
TV → loves { λy .λx .love(x , y) } < e, < e, t >>
N → woman { λz .woman(z) } < e, t >
A → tall { λz .tall(z) } < e, t >

I Note we haven’t given a meaning here to a tall woman.

I Could take this to have the same meaning as tall woman.

I This would be fine for this example (also in Assignment 2).
But what about every tall woman?

14 / 29



Computing semantics with Grammar II

Before we add more, let’s use Grammar II to compute the
semantics of Sam loves a tall woman.

loves TV λyx . love(x , y)
tall woman Nom λx . (λz .woman(z))(x) & (λz .tall(z))(x)

⇒β λx . woman(x) & tall(x)
loves a tall woman VP λx .∃y . (λx .woman(x) & tall(x))(y) &

(λyx . love(x , y))(y)(x)
⇒β λx .∃y . (woman(y) & tall(y)) &

love(x , y)
Sam loves a tall woman S (λx .∃y . · · · )(Sam)

⇒β ∃y .woman(y) & tall(y) & love(Sam, y)

15 / 29



Computing semantics with Grammar II

Before we add more, let’s use Grammar II to compute the
semantics of Sam loves a tall woman.

loves TV λyx . love(x , y)
tall woman Nom λx . (λz .woman(z))(x) & (λz .tall(z))(x)

⇒β λx . woman(x) & tall(x)
loves a tall woman VP λx .∃y . (λx .woman(x) & tall(x))(y) &

(λyx . love(x , y))(y)(x)
⇒β λx .∃y . (woman(y) & tall(y)) &

love(x , y)
Sam loves a tall woman S (λx .∃y . · · · )(Sam)

⇒β ∃y .woman(y) & tall(y) & love(Sam, y)

15 / 29



Computing semantics with Grammar II

Before we add more, let’s use Grammar II to compute the
semantics of Sam loves a tall woman.

loves TV λyx . love(x , y)
tall woman Nom λx . (λz .woman(z))(x) & (λz .tall(z))(x)

⇒β λx . woman(x) & tall(x)
loves a tall woman VP λx .∃y . (λx .woman(x) & tall(x))(y) &

(λyx . love(x , y))(y)(x)
⇒β λx .∃y . (woman(y) & tall(y)) &

love(x , y)
Sam loves a tall woman S (λx .∃y . · · · )(Sam)

⇒β ∃y .woman(y) & tall(y) & love(Sam, y)

15 / 29



Computing semantics with Grammar II

Before we add more, let’s use Grammar II to compute the
semantics of Sam loves a tall woman.

loves TV λyx . love(x , y)
tall woman Nom λx . (λz .woman(z))(x) & (λz .tall(z))(x)

⇒β λx . woman(x) & tall(x)
loves a tall woman VP λx .∃y . (λx .woman(x) & tall(x))(y) &

(λyx . love(x , y))(y)(x)
⇒β λx .∃y . (woman(y) & tall(y)) &

love(x , y)
Sam loves a tall woman S (λx .∃y . · · · )(Sam)

⇒β ∃y .woman(y) & tall(y) & love(Sam, y)

15 / 29



Computing semantics with Grammar II

Before we add more, let’s use Grammar II to compute the
semantics of Sam loves a tall woman.

loves TV λyx . love(x , y)
tall woman Nom λx . (λz .woman(z))(x) & (λz .tall(z))(x)

⇒β λx . woman(x) & tall(x)
loves a tall woman VP λx .∃y . (λx .woman(x) & tall(x))(y) &

(λyx . love(x , y))(y)(x)
⇒β λx .∃y . (woman(y) & tall(y)) &

love(x , y)
Sam loves a tall woman S (λx .∃y . · · · )(Sam)

⇒β ∃y .woman(y) & tall(y) & love(Sam, y)

15 / 29



Computing semantics with Grammar II

Before we add more, let’s use Grammar II to compute the
semantics of Sam loves a tall woman.

loves TV λyx . love(x , y)
tall woman Nom λx . (λz .woman(z))(x) & (λz .tall(z))(x)

⇒β λx . woman(x) & tall(x)
loves a tall woman VP λx .∃y . (λx .woman(x) & tall(x))(y) &

(λyx . love(x , y))(y)(x)
⇒β λx .∃y . (woman(y) & tall(y)) &

love(x , y)
Sam loves a tall woman S (λx .∃y . · · · )(Sam)

⇒β ∃y .woman(y) & tall(y) & love(Sam, y)

15 / 29



Computing semantics with Grammar II

Before we add more, let’s use Grammar II to compute the
semantics of Sam loves a tall woman.

loves TV λyx . love(x , y)
tall woman Nom λx . (λz .woman(z))(x) & (λz .tall(z))(x)

⇒β λx . woman(x) & tall(x)
loves a tall woman VP λx .∃y . (λx .woman(x) & tall(x))(y) &

(λyx . love(x , y))(y)(x)
⇒β λx .∃y . (woman(y) & tall(y)) &

love(x , y)
Sam loves a tall woman S (λx .∃y . · · · )(Sam)

⇒β ∃y .woman(y) & tall(y) & love(Sam, y)

15 / 29



Type raising

I We’ve given Sam, Kim the semantic type e, and woman the
semantic type < e, t >.

I But what type should some woman or every woman have?

I Idea: Since we wish to combine an NP.Sem with a VP.Sem (of
type < e, t >) to get an S.Sem (of type t), let’s try again
with NP.Sem having type << e, t >, t >.

Sam λP.P(Sam) (type raising)
every woman λP.∀x .woman(x)⇒ P(x)

The appropriate semantic attachment for NP VP is then

S → NP VP {NP.Sem (VP.Sem)}

16 / 29



Semantics of determiners

I Using this approach, we can also derive the semantics of
‘every woman’ from that of ’every’ and ’woman’.

I We’ve seen that ‘woman’ has semantic type < e, t >, and
’every woman’ has semantic type << e, t >, t >.

I So the interpretation of ‘every’ should have type
<< e, t >, << e, t >, t >>. Similarly for other determiners
(e.g. every, a, no, not every).

woman λx . woman(x) < e, t >

every λQ.λP.∀x .Q(x)⇒ P(x) << e, t >, << e, t >, t >>

a λQ.λP.∃x .Q(x) ∧ P(x) << e, t >, << e, t >, t >>

NP → Det N { Det.Sem (N.Sem) } << e, t >, t >

We can now compute the semantics of ‘every woman’ and check
that it β-reduces to λP.∀x .woman(x)⇒ P(x).

17 / 29



Example

The semantics of “every woman”:

18 / 29



More on type raising

I The natural rule for VP is now VP → TV NP.

I Since the semantic type for NP has now been raised to
<< e, t >, t >, and we want VP to have semantic type
< e, t >, what should the semantic type for TV be?

It had better be <<< e, t >, t >, < e, t >>.
(A 3rd order function type!)

TV → loves {λR<<e,t>,t>.λze .R(λw e . loves(z ,w))}
VP → TV NP {TV.Sem(NP.Sem)}

19 / 29



More on type raising

I The natural rule for VP is now VP → TV NP.

I Since the semantic type for NP has now been raised to
<< e, t >, t >, and we want VP to have semantic type
< e, t >, what should the semantic type for TV be?

It had better be <<< e, t >, t >, < e, t >>.
(A 3rd order function type!)

TV → loves {λR<<e,t>,t>.λze .R(λw e . loves(z ,w))}
VP → TV NP {TV.Sem(NP.Sem)}

19 / 29



To summarize where we’ve got to:

Grammar III
S → NP VP { NP.Sem(VP.Sem) } t
VP → TV NP { TV.Sem(NP.Sem) } < e, t >
NP → Sam { λP.P(Sam) } << e, t >, t >
NP → Det Nom { Det.Sem(Nom.Sem) } << e, t >, t >
Det → a { λQ.λP.∃x .Q(x) ∧ P(x) } << e, t >,<< e, t >, t >>>
Det → every { λQ.λP.∀x .Q(x) ⇒ P(x) } << e, t >,<< e, t >, t >>>
Nom → N { N.Sem } < e, t >
Nom → A Nom { λx .Nom.Sem(x)&A.Sem(x) } < e, t >
TV → loves { {λR.λz.R(λw . loves(z,w))} <<< e, t >, t >,< e, t >>
N → woman { λz.woman(z) } < e, t >
A → tall { λz.tall(z) } < e, t >

Can add similar entries for ‘student’, ‘computer’, ‘has access to’.

20 / 29



Example
The semantics for ‘every student has access to a computer’.

every student (λQ.λP. ∀x .Q(x)⇒ P(x))(λx .student(x))
→β λP.∀x . student(x)⇒ P(x)

a computer (λQ.λP. ∃x .Q(x) ∧ P(x))(λx .computer(x))
→β λP.∃x . computer(x) ∧ P(x)

h.a.t. a computer · · · →β · · ·
→β λz .∃x . computer(x) ∧ h a t(z , x)

(whole sentence)· · · →β · · ·
→β ∀x . student(x)⇒ ∃y . computer(y) ∧ h a t(x , y)

Note: In the last β-step, we’ve renamed ‘x’ to ‘y’ to avoid capture.

21 / 29



Example
The semantics for ‘every student has access to a computer’.

every student (λQ.λP. ∀x .Q(x)⇒ P(x))(λx .student(x))
→β λP.∀x . student(x)⇒ P(x)

a computer (λQ.λP. ∃x .Q(x) ∧ P(x))(λx .computer(x))
→β λP.∃x . computer(x) ∧ P(x)

h.a.t. a computer · · · →β · · ·
→β λz .∃x . computer(x) ∧ h a t(z , x)

(whole sentence)· · · →β · · ·
→β ∀x . student(x)⇒ ∃y . computer(y) ∧ h a t(x , y)

Note: In the last β-step, we’ve renamed ‘x’ to ‘y’ to avoid capture.

21 / 29



Example
The semantics for ‘every student has access to a computer’.

every student (λQ.λP. ∀x .Q(x)⇒ P(x))(λx .student(x))
→β λP.∀x . student(x)⇒ P(x)

a computer (λQ.λP. ∃x .Q(x) ∧ P(x))(λx .computer(x))
→β λP.∃x . computer(x) ∧ P(x)

h.a.t. a computer · · · →β · · ·
→β λz .∃x . computer(x) ∧ h a t(z , x)

(whole sentence)· · · →β · · ·
→β ∀x . student(x)⇒ ∃y . computer(y) ∧ h a t(x , y)

Note: In the last β-step, we’ve renamed ‘x’ to ‘y’ to avoid capture.

21 / 29



Example
The semantics for ‘every student has access to a computer’.

every student (λQ.λP. ∀x .Q(x)⇒ P(x))(λx .student(x))
→β λP.∀x . student(x)⇒ P(x)

a computer (λQ.λP. ∃x .Q(x) ∧ P(x))(λx .computer(x))
→β λP.∃x . computer(x) ∧ P(x)

h.a.t. a computer · · · →β · · ·
→β λz .∃x . computer(x) ∧ h a t(z , x)

(whole sentence)· · · →β · · ·
→β ∀x . student(x)⇒ ∃y . computer(y) ∧ h a t(x , y)

Note: In the last β-step, we’ve renamed ‘x’ to ‘y’ to avoid capture.

21 / 29



Example
The semantics for ‘every student has access to a computer’.

every student (λQ.λP. ∀x .Q(x)⇒ P(x))(λx .student(x))
→β λP.∀x . student(x)⇒ P(x)

a computer (λQ.λP. ∃x .Q(x) ∧ P(x))(λx .computer(x))
→β λP.∃x . computer(x) ∧ P(x)

h.a.t. a computer · · · →β · · ·
→β λz .∃x . computer(x) ∧ h a t(z , x)

(whole sentence)· · · →β · · ·
→β ∀x . student(x)⇒ ∃y . computer(y) ∧ h a t(x , y)

Note: In the last β-step, we’ve renamed ‘x’ to ‘y’ to avoid capture.

21 / 29



Example
The semantics for ‘every student has access to a computer’.

every student (λQ.λP. ∀x .Q(x)⇒ P(x))(λx .student(x))
→β λP.∀x . student(x)⇒ P(x)

a computer (λQ.λP. ∃x .Q(x) ∧ P(x))(λx .computer(x))
→β λP.∃x . computer(x) ∧ P(x)

h.a.t. a computer · · · →β · · ·
→β λz .∃x . computer(x) ∧ h a t(z , x)

(whole sentence)· · · →β · · ·
→β ∀x . student(x)⇒ ∃y . computer(y) ∧ h a t(x , y)

Note: In the last β-step, we’ve renamed ‘x’ to ‘y’ to avoid capture.
21 / 29



Question

Suppose that the predicate L(x, y) means x loves y. Which of the
following is not a possible representation of the meaning of
Everybody loves somebody?

1. ∀x .∃y .L(x , y)

2. (λP.∀x .∃y .P(x , y))(λx .λy .L(x , y))

3. (λP.∀x .∃y .P(x , y))(λx .λy .L(y , x))

4. (λP.∀x .∃y .P(y , x))(λx .λy .L(y , x))

22 / 29



Semantic Ambiguity

Whilst every student has access to a computer is neither
syntactically nor lexically ambiguous, it has two different
interpretations because of its determiners:

I every: interpreted as ∀ (universal quantifier)

I a: interpreted as ∃ (existential quantifier)

Meaning 1

Possibly a different computer per student
∀x(student(x)→ ∃y(computer(y) ∧ have access to(x , y)))

Meaning 2

Possibly the same computer for all students
∃y(computer(y) ∧ ∀x(student(x)→ have access to(x , y)))

23 / 29



Scope

The ambiguity arises because every and a each has its own scope:

Interpretation 1: every has scope over a
Interpretation 2: a has scope over every

I Scope is not uniquely determined either by left-to-right order,
or by position in the parse tree.

I We therefore need other mechanisms to ensure that the
ambiguity is reflected by there being multiple interpretations
assigned to S.

24 / 29



Scope ambiguity, continued

The number of interpretations grows exponentially with the
number of scope operators:

Every student at some university has access to a laptop.
1. Not necessarily same laptop, not necessarily same university
∀x(stud(x) ∧ ∃y(univ(y) ∧ at(x , y)) → ∃z(laptop(z) ∧ have access(x , z)))
2. Same laptop, not necessarily same university
∃z(laptop(z) ∧ ∀x(stud(x) ∧ ∃y(univ(y) ∧ at(x , y)) → have access(x , z)))
3. Not necessarily same laptop, same university
∃y(univ(y) ∧ ∀x((stud(x) ∧ at(x , y)) → ∃z(laptop(z) ∧ have access(x , z))))
4. Same university, same laptop
∃y(univ(y) ∧ ∃z(laptop(z) ∧ ∀x((stud(x) ∧ at(x , y)) → have access(x , z))))
5. Same laptop, same university
∃z(laptop(z) ∧ ∃y(univ(y) ∧ ∀x((stud(x) ∧ at(x , y)) → have access(x , z))))
where 4 & 5 are equivalent

Every student at some university does not have access to a
computer.
→ 18 interpretations

25 / 29



Coping with Scope: options

1. Enumerate all interpretations. Computationally
unattractive!

2. Use an underspecified representation that can be further
specified to each of the multiple interpretations on demand.

Sometimes the surrounding context will help us choose between
interpretations:

Every student has access to a computer. It can be borrowed from the
ITO. (⇒ Meaning 2)

26 / 29



Summary

I Syntax guides semantic composition in a systematic way.

I Lambda expressions facilitate the construction of
compositional semantic interpretations.

I Logical forms can be constructed by attaching valuation
functions to grammar rules.

I However, this approach is not adequate enough for quantified
NPs, as LFs are not always isomorphic with syntax.

I We can elegantly handle scope by building an abstract
underspecified representation and disambiguate on demand.

27 / 29


	Semantic Composition
	Review: compositionality, lambda expressions, and logical forms
	Examples
	Type raising

	Semantic (Scope) Ambiguity
	Definition
	Semantic Scope
	Approaches to Scope Ambiguity


