
Agreement, Types and Natural Language
Semantics

Informatics 2A: Lecture 25

Shay Cohen

14 November 2018

1 / 35

Last Class

I How do we extract a grammar from a treebank?

I How do we estimate the rule probabilities of a grammar?

I How can we overcome the limitations of plain PCFGs? (more
on that today)

2 / 35

Agreement phenomena

In PLs, typing rules enforce type agreement between different
(often separated) constituents of a program:

int i=0; ...; if (i>2) ...

There are somewhat similar phenomena in NL: constituents of a
sentence (often separated) may be constrained to agree on an
attribute such as person, number, gender.

I You, I imagine, are unable to attend.

I The hills are looking lovely today, aren’t they?

I He came very close to injuring himself.

3 / 35

Agreement in various languages
These examples illustrate that in English:

I Verbs agree in person and number with their subjects;

I Tag questions agree in person, number, tense and mode with their
main statement, and have the opposite polarity.

I Reflexive pronouns follow suit in person, number and gender.

French has much more by way of agreement phenomena:

I Adjectives agree with their head noun in gender and number.

Le petit chien, La petite souris, Les petites mouches

I Participles of être verbs agree with their subject:

Il est arrivé, Elles sont arrivées

I Participles of other verbs agree with preceding direct objects:

Il a vu la femme, Il l’a vue

How can we capture these kinds of constraints in a grammar?
4 / 35

Agreement rules: why bother?
Modelling agreement is obviously important if we want to generate
grammatically correct NL text.

But even for understanding input text, agreement can be useful for
resolving ambiguity.
E.g. the following sentence is ambiguous . . .

The boy who eats flies ducks.

. . . whilst the following are less so:

The boys who eat fly ducks.
The boys who eat flies duck.

5 / 35

Node-splitting via attributes

One solution is to refine our grammar by splitting certain
non-terminals according to various attributes. Examples of
attributes and their associated values are:

I Person: 1st, 2nd, 3rd

I Number: singular, plural

I Gender: masculine, feminine, neuter

I Case: nominative, accusative, dative, . . .

I Tense: present, past, future, . . .

In principle these are language-specific, though certain common
patterns recur in many languages.

We can then split phrase categories as the language demands, e.g.

I Split NP on person, number, case (e.g. NP[3,sg,nom]),

I Split VP on person, number, tense (e.g. VP[3,sg,fut]).

6 / 35

Parameterized CFG productions

We can often use such attributes to enforce agreement constraints.
This works because of the head phrase structure typical of NLs.
E.g. we may write parameterized rules such as:

S → NP[p,n,nom] VP[p,n]
NP[3,n,c] → Det[n] Nom[n]

Each of these really abbreviates a finite number of rules obtained
by specializing the attribute variables. (Still a CFG!)
When specializing, each variable must take the same value
everywhere, e.g.

S → NP[3,sg,nom] VP[3,sg]
S → NP[1,pl,nom] VP[1,pl]

NP[3,pl,acc] → Det[pl] Nom[pl]

Parsing algorithms can be adapted to work with this machinery:
don’t have to ‘build’ all the specialized rules individually.

7 / 35

Example: subject-verb agreement in English

S → NP[p,n,nom] VP[p,n]
NP[p,n,c] → Pro[p,n,c]

Pro[1,sg,nom] → I, etc.
Pro[1,sg,acc] → me, etc.

NP[3,n,c] → Det[n] Nom[n] RelOpt[n]
Nom[n] → N[n] | Adj Nom[n]

N[sg] → person, etc.
N[pl] → people, etc.

RelOpt[n] → ε | who VP[3,n]
VP[p,n] → VV[p,n] NP[p’,n’,acc]
VV[p,n] → V[p,n] | BE[p,n] VG
V[3,sg] → teaches, etc.

BE[p,n] → is, etc.
VG → teaching, etc.

(Other rules omitted.)

8 / 35

Semantics

I We mentioned in previous lectures that grammars need to be
revealing

I We also mentioned that language is compositional: the
meaning of a sentence is constructed from the meaning of its
constituents

I Is syntax enough to represent the meaning?

I Want to be able to map from syntax to a logical statement
(semantics)

9 / 35

Syntax and Semantics

Syntax is concerned with which expressions in a language are
well-formed or grammatically correct. This can largely be described
by rules that make no reference to meaning.
Semantics is concerned with the meaning of expressions: i.e. how
they relate to ‘the world’. This includes both their

I denotation (literal meaning)

I connotation (other associations)

When we say a sentence is ambiguous, we usually mean it has
more than one ‘meaning’. (So what exactly are meanings?)

We’ve already encountered word sense ambiguity and structural
ambiguity. We’ll also meet another kind of semantic ambiguity,
called scope ambiguity. (This already shows that the meaning of a
sentence can’t be equated with its parse tree.)

10 / 35

Formal and natural language semantics

Providing a semantics for a language (natural or formal) involves
giving a systematic mapping from the structure underlying a string
(e.g. syntax tree) to its ‘meaning’.

Whilst the kinds of meaning conveyed by NL are much more
complex than those conveyed by FLs, they both broadly adhere to
a principle called compositionality.

11 / 35

Compositionality

Compositionality: The meaning of a complex expression is a
function of the meaning of its parts and of the rules by which they
are combined.

While formal languages are designed for compositionality, the
meaning of NL utterances can often (not always) be derived
compositionally as well.

Compare:

purple armadillo hot dog

12 / 35

Other desiderata for Meaning Representation

Verifiability: One must be able to use the meaning representation
of a sentence to determine whether the sentence is true with
respect to some given model of the world.

Example: given an exhaustive table of ‘who loves whom’ relations
(a world model), the meaning of a sentence like everybody loves
Mary can be established by checking it against this model.

13 / 35

Desiderata for Meaning Representation

Unambiguity: a meaning representation should be unambiguous,
with one and only one interpretation. If a sentence is ambiguous,
there should be a different meaning representation for each sense.

Example: each interpretation of I made her duck or time flies like
an arrow should have a distinct meaning representation.

14 / 35

Desiderata for Meaning Representation

Canonical form: the meaning representations for sentences with
the same meaning should (ideally) both be convertible into the
same canonical form, that shows their equivalence.

Example: the sentence I filled the room with balloons should
ideally have the same canonical form with I put enough balloons in
the room to fill it from floor to ceiling.

(The kind of formal semantics we discuss won’t achieve this
particularly well!)

15 / 35

Desiderata for Meaning Representation

Logical inference: A good meaning representation should come
with a set of rules for logical inference or deduction, showing which
truths imply which other truths.

E.g. from

Zoot is an armadillo.
Zoot is purple.
Every purple armadillo sneezes.

we should be able to deduce

Zoot sneezes.

16 / 35

Propositional Logic

Propositional logic is a very simple system for meaning
representation and reasoning in which expressions comprise:

I atomic sentences (P, Q, etc.);

I complex sentences built up from atomic sentences and logical
connectives (and, or, not, implies).

17 / 35

Propositional Logic

Why not use propositional logic as a meaning representation
system for NL? E.g.

Fred ate lentils or he ate rice. (P ∨ Q)
Fred ate lentils or John ate lentils (P ∨ R)

I We’re unable to represent the internal structure of the
proposition ’Fred ate lentils’ (e.g. how its meaning is derived
from that of ’Fred’, ’ate’, ’lentils’).

I We’re unable to express e.g.

Everyone ate lentils.
Someone ate lentils.

18 / 35

Predicate Logic

First-order predicate logic (FOPL) let us do a lot more (though
still only accounts for a tiny part of NL).

Sentences in FOPL are built up from terms made from:

I constant and variable symbols that represent entities;

I predicate symbols that represent properties of entities and
relations that hold between entities;

I function symbols (won’t bother with these here).

which are combined into simple sentences (predicate-argument
structures) and complex sentences through:

quantifiers (∀, ∃) disjunction (∨)
negation (¬) implication (⇒)
conjunction (∧) equality (=)

19 / 35

Predicate Logic Example

20 / 35

Constants

Constant symbols:

I Each constant symbol denotes one and only one entity:
Scotland, Aviemore, EU, Barack Obama, 2007

I Not all entities have a constant that denotes them:
Barack Obama’s right knee, this piece of chalk

I Several constant symbols may denote the same entity:
The Morning Star ≡ The Evening Star ≡ Venus
National Insurance number, Student ID, your name

21 / 35

Predicates

Predicate symbols:

I Every predicate has a specific arity. E.g. brown/1, country/1,
live in/2, give/3.

I A predicate symbol of arity n is interpreted as a set of
n-tuples of entities that satisfy it.

I Predicates of arity 1 denote properties: brown/1.

I Predicates of arity > 1 denote relations: live in/2, give/3.

22 / 35

Variables

Variable symbols: x, y, z:

I Variable symbols range over entities.

I An atomic sentence with a variable among its arguments, e.g.,
Part of(x, EU), only has a truth value if that variable is bound
by a quantifier.

23 / 35

Universal Quantifier (∀)

Universal quantifiers can be used to express general truths:

I Cats are mammals

I ∀x.Cat(x) ⇒ Mammal(x)

Intuitively, a universally quantified sentence corresponds to a
(possibly infinite) conjunction of sentences:

Cat(sam) ⇒ Mammal(sam) ∧ Cat(zoot) ⇒ Mammal(zoot)
∧ Cat(fritz) ⇒ Mammal(fritz) ∧ . . .

A quantifier has a scope, analogous to scope of PL variables.

24 / 35

Existential Quantifier (∃)

Existential quantifiers are used to express the existence of an entity
with a given property, without specifying which entity:

I I have a cat

I ∃x.Cat(x) ∧ Own(i, x)

An existentially quantified sentence corresponds intuitively to a
disjunction of sentences:

(Cat(Josephine) ∧ Own(I, Josephine)) ∨
(Cat(Zoot) ∧ Own(I, Zoot)) ∨
(Cat(Malcolm) ∧ Own(I, Malcolm)) ∨
(Cat(John) ∧ Own(I, John)) ∨ . . .

25 / 35

Existential Quantifier (∃)

Why do we use “∧” rather than “⇒” with the existential
quantifier? What would the following correspond to?

∃x.Cat(x) ⇒ Own(i, x)
(a) I own a cat
(b) There’s something such that if it’s a cat, I own it.

What if that something isn’t a cat?

I The proposition formed by connecting two propositions with
⇒ is true if the antecedent (the left of the ⇒) is false.

I So this proposition is true if there is something that’s e.g. a
laptop. But “I own a cat” shouldn’t be true simply for this
reason.

26 / 35

Abstract syntax of FOPL

The language of first-order predicate logic can be defined by the
following CFG (think of it as a grammar for abstract syntax trees).
We write F for formulae, AF for atomic formulae, t for terms, v for
variables, c for constants.

F → AF | F ∧ F | F ∨ F | F ⇒ F | ¬ F
| ∀ v.F | ∃ v.F

AF → t=t | UnaryPred(t) | BinaryPred(t,t) | . . .
t → v | c

27 / 35

Question

Which captures the meaning of Every dog has a bone?

1. ∀x .∃y .(dog(x) ∧ bone(y) ∧ has(x , y))

2. ∀x .(dog(x)⇒ ∃y .(bone(y) ∧ has(x , y)))

3. ∀x .∃y .bone(y) ∧ (dog(x)⇒ has(x , y))

4. ∃y .∀x .(dog(x)⇒ (bone(y) ∧ has(x , y)))

(N.B. The logical form looks structurally quite different from the
parse tree for the original sentence. So there’s some real work to
be done!)

28 / 35

Types in Natural Language Semantics

Types are very useful if we wish to describe the semantics (i.e.,
meaning) of natural languages. For example, we can use types
employed in logic to model the meanings of various phrase types.

Basic Types

1. e — the type of real-world entities such as Inf2a, Mary, John.

2. t — the type of facts with truth value like ‘Inf2a is amusing’.

From these two basic types, we may construct more complex types
via the function type constructor.

29 / 35

From basic to complex formal types

We use the notation < σ, τ > to denote functions of the form σ → τ .
E.g.:

I <e,t>: unary predicates – functions from entities to facts.
I <e, <e,t>>: binary predicates – functions from entities to unary

predicates.
I <<e,t>, t>: type-raised entities – functions from unary

predicates to truth values.

I Inf2a, Mary : e
I enjoys : <e, <e,t>>
I enjoys Inf2a, is amusing : <e,t>
I Inf2a is amusing, John enjoys Inf2a : t

This simple system of types will be enough to start with. But for
more precise semantic modelling, a much richer type system is
desirable.

30 / 35

Compositionality

Compositionality: The meaning of a complex expression is a
function of the meaning of its parts and of the rules by which they
are combined.

Do we have sufficient tools to systematically compute meaning
representations according to this principle?

I The meaning of a complete sentence will hopefully be a FOPL
formula, which we consider as having type t (truth values).

I But the meaning of smaller fragments of the sentence will
have other types. E.g.

has a bone < e, t >
every dog << e, t >, t >

I The idea is to show how to associate a meaning with such
fragments, and how these meanings combine.

I To do this, we need to extend our language of FOPL with λ
expressions (λ = lambda; written as \ in Haskell).

31 / 35

Lambda (λ) Expressions

λ-expressions are an extension to FOPL that allows us to work
with ‘partially constructed’ formulae. A λ-expression consists of:

I the Greek letter λ, followed by a variable (formal parameter);

I a FOPL expression that may involve that variable.

λx .sleep(x) : < e, t >
‘The function that takes an entity x to the statement sleep(x)’

(λx .sleep(x))︸ ︷︷ ︸
function

(Mary)︸ ︷︷ ︸
argument

: t

A λ-expression can be applied to a term.
(The above has the same truth value as sleep(Mary).)

32 / 35

Lambda expressions can be nested. We can use nesting to create
functions of several arguments that accept their arguments one at
a time.

λy .λx . love(x,y) : < e, < e, t >>
‘The function that takes y to
(the function that takes x to the statement love(x,y))’

λz .λy .λx . give(x,y,z) : < e, < e, < e, t >>>
‘The function that takes z to
(the function that takes y to
(the function that takes x to the statement give(x,y,z)))’

33 / 35

Beta Reduction
When a lambda expression applies to a term, a reduction operation
(beta (β) reduction) can be used to replace its formal parameter
with the term and simplify the result. In general:

(λx .M)N ⇒β M[x 7→ N] (M with N substituted for x)

(λx .sleep(x))︸ ︷︷ ︸
function

(Mary)︸ ︷︷ ︸
argument

⇒β sleep(Mary)

(λy .λx .love(x , y))︸ ︷︷ ︸
function

(crabapples)︸ ︷︷ ︸
argument

⇒β λx .love(x , crabapples)

(λx .love(x , crabapples))︸ ︷︷ ︸
function

(Mary)︸ ︷︷ ︸
argument

⇒β love(Mary , crabapples)

34 / 35

Summary

I Agreement in language can be modeled in a grammar by
splitting the nonterminals.

I First-order predicate logic can be used to model the meaning
of language.

I Each constituent in a sentence is given a type, such as an
“entity” or a “statement.”

I The types can become quite complex and need to make use of
λ-expressions to retain compositionality

Next Lecture: more about computing semantics using syntax

35 / 35

	Agreement
	Semantics
	Syntax and Semantics
	Compositionality
	Desiderata for Meaning Representation

	Logical Representations
	Propositional Logic
	Predicate Logic

	Semantic Composition
	Compositionality
	Lambda Expressions

