Earley Parsing Informatics 2A: Lecture 21

Shay Cohen

5 November 2018

A succinct representation of CKY

We have a Boolean table called Chart, such that Chart[A, i, j] is true if there is a sub-phrase according the grammar that dominates words *i* through words *j*

Build this chart recursively, similarly to the Viterbi algorithm: For i > i + 1:

 $\operatorname{Chart}[A, i, j] = \bigvee_{k=i+1}^{j-1} \bigvee_{A \to B \ C} \operatorname{Chart}[B, i, k] \land \operatorname{Chart}[C, k, j]$

Seed the chart, for i + 1 = j: Chart[A, i, i + 1] = True if there exists a rule $A \rightarrow w_{i+1}$ where w_{i+1} is the (i + 1)th word in the string

Computational complexity of CKY

We use big-O notation

We count how many "basic operations" it takes to fill-in the CYK chart as a function of the length of the sentence n

The CKY algorithm loops over: splitting points (O(n)), beginning point (O(n)) and end points in spans (O(n)) – as such, its complexity is $O(n^3)$

What would be the complexity as a function of the size of the grammar |G|?

Note about CYK

The CYK algorithm parses input strings in Chomsky normal form. Can you see how to change it to an algorithm with an arbitrary RHS length (of only nonterminals)?

Note about CYK

The CYK algorithm parses input strings in Chomsky normal form. Can you see how to change it to an algorithm with an arbitrary RHS length (of only nonterminals)?

We would have to split a given span into all possible subspans according to the length of the RHS. What is the complexity of such algorithm?

Note about CYK

The CYK algorithm parses input strings in Chomsky normal form. Can you see how to change it to an algorithm with an arbitrary RHS length (of only nonterminals)?

We would have to split a given span into all possible subspans according to the length of the RHS. What is the complexity of such algorithm?

Still $O(n^2)$ charts, but now it takes $O(n^{k-1})$ time to process each cell, where k is the maximal length of an RHS. Therefore: $O(n^{k+1})$. For CYK, k = 2.

Can we do better than that?

A Simple Grammar: The Problem with CKY

Consider this simple grammar in Chomsky normal form:

Binary rules	Lexical rules
$S\toB\;X$	$X \to a$
$X \to X \; X$	$B\tob$
$S\toC\;Y$	$Y \to a$
$Y\toY\;Y$	$C \to c$

What is the language of this grammar?

A Simple Grammar: The Problem with CKY

Consider this simple grammar in Chomsky normal form:

Binary rules	Lexical rules
$S\toB\;X$	$X \to a$
$X \to X \; X$	$B \to b$
$S\toC\;Y$	$Y \to a$
$Y\toY\;Y$	$C \to c$

What is the language of this grammar? $(b|c)a^+$

What will CKY do if we try to parse baaaaa?

A Simple Grammar: The Problem with CKY

Consider this simple grammar in Chomsky normal form:

Binary rules	Lexical rules
$S\toB\;X$	$X \to a$
$X \to X \; X$	$B \to b$
$S\toC\;Y$	$Y \to a$
$Y\toY\;Y$	$C \to c$

What is the language of this grammar? $(b|c)a^+$

What will CKY do if we try to parse baaaaa?

What will CKY do if we try to parse caaaaa?

The CYK algorithm avoids redundant work by storing in a chart all the constituents it finds.

But it populates the table with phantom constituents, that don't form part of any complete parse. Can be a significant problem in long sentences.

The idea of the *Earley algorithm* is to avoid this, by only building constituents that are compatible with the input read so far.

Earley Parsing

Key idea: as well as completed productions (ones whose entire RHS have been recognized), we also record incomplete productions (ones for which there may so far be only partial evidence).

- Incomplete productions (aka incomplete constituents) are effectively predictions about what might come next and what will be learned from finding it.
- Incomplete constituents can be represented using an extended form of production rule called a dotted rule, e.g.
 VP → V NP.
- The dot indicates how much of the RHS has already been found. The rest is a prediction of what is to come.

Earley Parsing

- Allows arbitrary CFGs
- Top-down control
- Fills a table in a single sweep over the input
- ► Table entries represent:
 - Completed constituents and their locations
 - In-progress constituents
 - Predicted constituents

States

The table entries are called states and are represented with dotted-rules.

 $S \rightarrow \bullet VP$ [0,0] $NP \rightarrow Det \bullet Nominal$ [1,2] $VP \rightarrow V NP \bullet$ [0,3] A VP is predicted at the start of the sentence An NP is in progress; seen Det, Nominal is expected A VP has been found starting at 0 and ending at 3

Once chart is populated there should be an S the final column that spans from 0 to N and is complete: $S \rightarrow \alpha \bullet [0, N]$. If that's the case you're done.

Sketch of Earley Algorithm

- 1. Predict all the states you can upfront, working top-down from *S*
- 2. For each word in the input:
 - 2.1 Scan in the word.
 - 2.2 Complete or extend existing states based on matches.
 - 2.3 Add new predictions.
- 3. When out of words, look at the chart to see if you have a winner.

The algorithm uses three basic operations to process states in the chart: PREDICTOR and COMPLETER add states to the chart entry being processed; SCANNER adds a state to the next chart entry.

Predictor

- Creates new states representing top-down expectations
- Applied to any state that has a non-terminal (other than a part-of-speech category) immediately to right of dot
- Application results in creation of one new state for each alternative expansion of that non-terminal
- New states placed into same chart entry as generating state

 $S \rightarrow \bullet VP$, [0,0]

- $VP \rightarrow \bullet$ Verb, [0,0]
- $VP \rightarrow \bullet$ Verb NP, [0,0]
- $VP \rightarrow \bullet$ Verb NP PP, [0,0]
- $VP \rightarrow \bullet$ Verb PP, [0,0]

/P
$$\rightarrow \bullet$$
 VP PP, [0,0]

SCANNER

- Applies to states with a part-of-speech category to right of dot
- Incorporates into chart a state corresponding to prediction of a word with particular part-of-speech
- Creates new state from input state with dot advanced over predicted input category
- Unlike CYK, only parts-of-speech of a word that are predicted by some existing state will enter the chart (top-down input)

 $VP \rightarrow \bullet Verb NP$, [0,0] $VP \rightarrow book \bullet NP$, [0,1]

Completer

- Applied to state when its dot has reached right end of the rule
- This means that parser has successfully discovered a particular grammatical category over some span of the input
- COMPLETER finds and advances all previously created states that were looking for this category at this position in input
- Creates states copying the older state, advancing dot over expected category, and installing new state in chart

 $\begin{array}{ccc} & NP \rightarrow Det \ Nominal \ \bullet, \ [1,3] \\ \mbox{finds state} & VP \ \rightarrow \ Verb \ \bullet \ NP, \ [0,1] \\ \mbox{finds state} & VP \ \rightarrow \ Verb \ \bullet \ NP \ PP, \ [0,1] \end{array}$

Completer

- Applied to state when its dot has reached right end of the rule
- This means that parser has successfully discovered a particular grammatical category over some span of the input
- COMPLETER finds and advances all previously created states that were looking for this category at this position in input
- Creates states copying the older state, advancing dot over expected category, and installing new state in chart

NP —	> Det	Nor	ninal •, [1,3]
finds state	VP	\rightarrow	<i>Verb</i> ● <i>NP</i> , [0,1]
finds state	VP	\rightarrow	Verb • NP PP, $[0,1]$
adds complete state	VP	\rightarrow	Verb NP ●, [0,3]
adds incomplete state	VP	\rightarrow	Verb NP • PP, [0,3]

We will use the grammar to parse the sentence "Book that flight".

Grammar Rules

 $\begin{array}{l} S \rightarrow NP \ VP \\ S \rightarrow Aux \ NP \ VP \\ S \rightarrow VP \\ NP \rightarrow Pronoun \\ NP \rightarrow Proper-Noun \\ NP \rightarrow Det \ Nominal \\ Nominal \rightarrow Noun \\ Nominal \rightarrow Nominal \ Noun \\ Nominal \rightarrow Nominal \ Noun \\ Nominal \rightarrow Nominal \ PP \end{array}$

Rules $VP \rightarrow Verb$ $VP \rightarrow Verb NP$ $VP \rightarrow Verb NP PP$ $VP \rightarrow Verb PP$ $VP \rightarrow VP PP$ $PP \rightarrow Preposition NP$ $Verb \rightarrow book|include|prefer$ $Noun \rightarrow book|flight|meal$ $Det \rightarrow that|this|these$

state	rule	start/end	reason
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet$ Aux NP VP	[0,0]	Predictor
S3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	NP ightarrow ullet Pronoun	[0,0]	Predictor
S5	NP ightarrow ullet Proper-Noun	[0,0]	Predictor
S6	$\textit{NP} ightarrow egin{array}{cc} \bullet & \textit{Det Nominal} \end{array}$	[0,0]	Predictor
S7	$V\!P ightarrow ullet$ Verb	[0,0]	Predictor
S8	$VP ightarrow \bullet Verb NP$	[0,0]	Predictor
S9	$VP \rightarrow \bullet$ Verb NP PP	[0,0]	Predictor
S10	$VP ightarrow \ lacksquare$ Verb PP	[0,0]	Predictor
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor

state	rule	start/end	reason
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet$ Aux NP VP	[0,0]	Predictor
S 3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	NP ightarrow ullet Pronoun	[0,0]	Predictor
S5	NP ightarrow ullet Proper-Noun	[0,0]	Predictor
S6	$\textit{NP} ightarrow egin{array}{cc} \bullet & \textit{Det Nominal} \end{array}$	[0,0]	Predictor
S7	VP ightarrow ullet Verb	[0,0]	Predictor
S8	$VP \rightarrow$ • Verb NP	[0,0]	Predictor
S9	$VP \rightarrow$ • Verb NP PP	[0,0]	Predictor
S10	VP ightarrow ~ullet Verb PP	[0,0]	Predictor
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor

state	rule	start/end	reason
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet$ Aux NP VP	[0,0]	Predictor
S3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	NP ightarrow ullet Pronoun	[0,0]	Predictor
S5	NP ightarrow ullet Proper-Noun	[0,0]	Predictor
S6	$\textit{NP} ightarrow egin{array}{cc} \bullet & \textit{Det Nominal} \end{array}$	[0,0]	Predictor
S7	$V\!P ightarrow ullet$ Verb	[0,0]	Predictor
S8	$VP \rightarrow$ • Verb NP	[0,0]	Predictor
S9	$VP \rightarrow$ • Verb NP PP	[0,0]	Predictor
S10	$VP ightarrow \ lacksquare$ Verb PP	[0,0]	Predictor
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor

state	rule	start/end	reason
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet$ Aux NP VP	[0,0]	Predictor
S3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	$NP ightarrow \bullet Pronoun$	[0,0]	Predictor
S5	$NP \rightarrow \bullet Proper-Noun$	[0,0]	Predictor
S 6	$NP ightarrow \bullet Det Nominal$	[0,0]	Predictor
S7	VP ightarrow ullet Verb	[0,0]	Predictor
S8	$VP \rightarrow$ • Verb NP	[0,0]	Predictor
S9	$VP \rightarrow$ • Verb NP PP	[0,0]	Predictor
S10	VP ightarrow ~ullet Verb PP	[0,0]	Predictor
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor

state	rule	start/end	reason
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet$ Aux NP VP	[0,0]	Predictor
S3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	NP ightarrow ullet Pronoun	[0,0]	Predictor
S5	NP ightarrow ullet Proper-Noun	[0,0]	Predictor
S6	$\textit{NP} ightarrow egin{array}{cc} \bullet & \textit{Det Nominal} \end{array}$	[0,0]	Predictor
S7	$VP ightarrow \bullet Verb$	[0,0]	Predictor
S 8	$VP \rightarrow$ • Verb NP	[0,0]	Predictor
S9	$VP \rightarrow$ • Verb NP PP	[0,0]	Predictor
S10	$VP \rightarrow \bullet$ Verb PP	[0,0]	Predictor
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor

state	rule	start/end	reason
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet$ Aux NP VP	[0,0]	Predictor
S3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	NP ightarrow ullet Pronoun	[0,0]	Predictor
S5	NP ightarrow ullet Proper-Noun	[0,0]	Predictor
S6	NP ightarrow ullet Det Nominal	[0,0]	Predictor
S7	$V\!P ightarrow egin{array}{cc} \bullet & V\!erb \end{array}$	[0,0]	Predictor
S8	$VP \rightarrow$ • Verb NP	[0,0]	Predictor
S9	$VP \rightarrow$ • Verb NP PP	[0,0]	Predictor
S10	$VP \rightarrow \bullet$ Verb PP	[0,0]	Predictor
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor

state	rule	start/end	reason
S12	$\mathit{Verb} ightarrow \mathit{book} ullet$	[0,1]	Scanner
S13	VP ightarrow Verb ullet	[0,1]	Completer
S14	$VP \rightarrow Verb \bullet NP$	[0,1]	Completer
S15	$VP \rightarrow Verb \bullet NP PP$	[0,1]	Completer
S16	VP ightarrow Verb ullet PP	[0,1]	Completer
S17	S ightarrow VP ullet	[0,1]	Completer
S18	$VP \rightarrow VP \bullet PP$	[1,1]	Completer
S19	NP ightarrow ullet Pronoun	[1,1]	Predictor
S20	NP ightarrow ullet Proper-Noun	[1,1]	Predictor
S21	$\textit{NP} \rightarrow \bullet \textit{Det Nominal}$	[1,1]	Predictor
S22	PP ightarrow ullet P Prep NP	[1,1]	Predictor

state	rule	start/end	reason
S12	$\mathit{Verb} ightarrow \mathit{book} ullet$	[0,1]	Scanner
S13	VP ightarrow Verb ullet	[0,1]	Completer
S14	VP ightarrow Verb ullet NP	[0,1]	Completer
S15	$VP \rightarrow Verb \bullet NP PP$	[0,1]	Completer
S16	VP ightarrow Verb ullet PP	[0,1]	Completer
S17	S ightarrow VP ullet	[0,1]	Completer
S18	$VP \rightarrow VP \bullet PP$	[1,1]	Completer
S19	NP ightarrow ullet Pronoun	[1,1]	Predictor
S20	NP ightarrow ullet Proper-Noun	[1,1]	Predictor
S21	$\textit{NP} \rightarrow \bullet \textit{Det Nominal}$	[1,1]	Predictor
S22	PP ightarrow ullet P Prep NP	[1,1]	Predictor

state	rule	start/end	reason
S12	$\mathit{Verb} ightarrow \mathit{book} ullet$	[0,1]	Scanner
S13	VP ightarrow Verb ullet	[0,1]	Completer
S14	$VP \rightarrow Verb \bullet NP$	[0,1]	Completer
S15	$VP \rightarrow Verb \bullet NP PP$	[0,1]	Completer
S16	$VP \rightarrow Verb \bullet PP$	[0,1]	Completer
S17	S ightarrow VP ullet	[0,1]	Completer
S18	$VP \rightarrow VP \bullet PP$	[1,1]	Completer
S19	NP ightarrow ullet Pronoun	[1,1]	Predictor
S20	NP ightarrow ullet Proper-Noun	[1,1]	Predictor
S21	NP ightarrow ullet Det Nominal	[1,1]	Predictor
S22	PP ightarrow ullet P Prep NP	[1,1]	Predictor

state	rule	start/end	reason
S12	$\mathit{Verb} ightarrow \mathit{book} ullet$	[0,1]	Scanner
S13	VP ightarrow Verb ullet	[0,1]	Completer
S14	$VP \rightarrow Verb \bullet NP$	[0,1]	Completer
S15	$VP \rightarrow Verb \bullet NP PP$	[0,1]	Completer
S16	VP ightarrow Verb ullet PP	[0,1]	Completer
S17	S ightarrow VP ullet	[0,1]	Completer
S18	$VP \rightarrow VP \bullet PP$	[1,1]	Completer
S19	NP ightarrow ullet Pronoun	[1,1]	Predictor
S20	NP ightarrow ullet Proper-Noun	[1,1]	Predictor
S21	$\textit{NP} \rightarrow \bullet \textit{Det Nominal}$	[1,1]	Predictor
S22	PP ightarrow ullet P Prep NP	[1,1]	Predictor

state	rule	start/end	reason
S12	$\mathit{Verb} ightarrow \mathit{book} ullet$	[0,1]	Scanner
S13	VP ightarrow Verb ullet	[0,1]	Completer
S14	$VP \rightarrow Verb \bullet NP$	[0,1]	Completer
S15	$VP \rightarrow Verb \bullet NP PP$	[0,1]	Completer
S16	VP ightarrow Verb ullet PP	[0,1]	Completer
S17	S ightarrow VP ullet	[0,1]	Completer
S18	$VP \rightarrow VP \bullet PP$	[1,1]	Completer
S19	NP ightarrow ullet Pronoun	[1,1]	Predictor
S20	NP ightarrow ullet Proper-Noun	[1,1]	Predictor
S21	$\textit{NP} \rightarrow \bullet \textit{Det Nominal}$	[1,1]	Predictor
S22	PP ightarrow ullet P Prep NP	[1,1]	Predictor

state	rule	start/end	reason
S12	$\mathit{Verb} ightarrow \mathit{book} ullet$	[0,1]	Scanner
S13	VP ightarrow Verb ullet	[0,1]	Completer
S14	$VP \rightarrow Verb \bullet NP$	[0,1]	Completer
S15	$VP \rightarrow Verb \bullet NP PP$	[0,1]	Completer
S16	VP ightarrow Verb ullet PP	[0,1]	Completer
S17	S ightarrow VP ullet	[0,1]	Completer
S18	$VP \rightarrow VP \bullet PP$	[1,1]	Completer
S19	$NP \rightarrow \bullet Pronoun$	[1,1]	Predictor
S20	$NP \rightarrow \bullet$ Proper-Noun	[1,1]	Predictor
S21	$NP \rightarrow \bullet$ Det Nominal	[1,1]	Predictor
S22	PP ightarrow ullet P Prep NP	[1,1]	Predictor

state	rule	start/end	reason
S12	Verb $ ightarrow$ book $ullet$	[0,1]	Scanner
S13	VP ightarrow Verb ullet	[0,1]	Completer
S14	VP ightarrow Verb ullet NP	[0,1]	Completer
S15	$VP \rightarrow Verb \bullet NP PP$	[0,1]	Completer
S16	VP ightarrow Verb ullet PP	[0,1]	Completer
S17	S ightarrow VP ullet	[0,1]	Completer
S18	$VP \rightarrow VP \bullet PP$	[1,1]	Completer
S19	NP ightarrow ullet Pronoun	[1,1]	Predictor
S20	NP ightarrow ullet Proper-Noun	[1,1]	Predictor
S21	$\textit{NP} \rightarrow \bullet \textit{Det Nominal}$	[1,1]	Predictor
S22	$PP \rightarrow \bullet Prep NP$	[1,1]	Predictor

state	rule	start/end	reason
S12	$\mathit{Verb} ightarrow \mathit{book} ullet$	[0,1]	Scanner
S13	VP ightarrow Verb ullet	[0,1]	Completer
S14	$VP \rightarrow Verb \bullet NP$	[0,1]	Completer
S15	$VP \rightarrow Verb \bullet NP PP$	[0,1]	Completer
S16	VP ightarrow Verb ullet PP	[0,1]	Completer
S17	S ightarrow VP ullet	[0,1]	Completer
S18	$VP \rightarrow VP \bullet PP$	[1,1]	Completer
S19	NP ightarrow ullet Pronoun	[1,1]	Predictor
S20	NP ightarrow ullet Proper-Noun	[1,1]	Predictor
S21	$NP \rightarrow \bullet$ Det Nominal	[1,1]	Predictor
S22	PP ightarrow ullet P Prep NP	[1,1]	Predictor

state	rule	start/end	reason
S23	Det $ ightarrow$ that $ullet$	[1,2]	Scanner
S24	NP ightarrow Det ullet Nominal	[1,2]	Completer
S25	Nominal $ ightarrow ullet$ Noun	[2,2]	Predictor
S26	Nominal $ ightarrow$ $ullet$ Nominal Noun	[2,2]	Predictor
S27	Nominal $ ightarrow ullet$ Nominal PP	[2,2]	Predictor

state	rule	start/end	reason
S23	$\mathit{Det} ightarrow \mathit{that} ullet$	[1,2]	Scanner
S24	NP ightarrow Det ullet Nominal	[1,2]	Completer
S25	Nominal $ ightarrow ullet$ Noun	[2,2]	Predictor
S26	Nominal $ ightarrow$ $ullet$ Nominal Noun	[2,2]	Predictor
S27	Nominal $\rightarrow \bullet$ Nominal PP	[2,2]	Predictor

state	rule	start/end	reason
S23	$\mathit{Det} ightarrow \mathit{that} ullet$	[1,2]	Scanner
S24	NP ightarrow Det ullet Nominal	[1,2]	Completer
S25	Nominal $ ightarrow ullet$ Noun	[2,2]	Predictor
S26	Nominal $ ightarrow$ $ullet$ Nominal Noun	[2,2]	Predictor
S27	Nominal $\rightarrow \bullet$ Nominal PP	[2,2]	Predictor

state	rule	start/end	reason
S23	Det $ ightarrow$ that $ullet$	[1,2]	Scanner
S24	NP ightarrow Det ullet Nominal	[1,2]	Completer
S25	Nominal $ ightarrow ullet$ Noun	[2,2]	Predictor
S26	Nominal \rightarrow • Nominal Noun	[2,2]	Predictor
S27	Nominal $ ightarrow$ $ullet$ Nominal PP	[2,2]	Predictor

state	rule	start/end	reason
S28	Noun $ ightarrow ullet$ flight	[2,3]	Scanner
S29	Nominal $ ightarrow$ Noun $ullet$	[2,3]	Completer
S30	NP ightarrow Det Nominal $ullet$	[1,3]	Completer
S31	Nominal \rightarrow Nominal • Noun	[2,3]	Completer
S32	Nominal $ ightarrow$ Nominal • PP	[2,3]	Completer
S33	$VP ightarrow Verb \; NP \; ullet$	[0,3]	Completer
S34	VP ightarrow Verb NP ullet PP	[0,3]	Completer
S35	PP ightarrow Prep ullet NP	[3,3]	Predictor
S36	S ightarrow VP ullet	[0,3]	Completer
S37	$VP \rightarrow VP \bullet PP$	[0,3]	Completer

state	rule	start/end	reason
S28	Noun $ ightarrow ullet$ flight	[2,3]	Scanner
S29	Nominal $ ightarrow$ Noun $ullet$	[2,3]	Completer
S30	NP ightarrow Det Nominal ullet	[1,3]	Completer
S31	Nominal \rightarrow Nominal • Noun	[2,3]	Completer
S32	Nominal $ ightarrow$ Nominal • PP	[2,3]	Completer
S33	$VP ightarrow Verb \; NP \; ullet$	[0,3]	Completer
S34	VP ightarrow Verb NP ullet PP	[0,3]	Completer
S35	PP ightarrow Prep ullet NP	[3,3]	Predictor
S36	S ightarrow VP ullet	[0,3]	Completer
S37	$VP \rightarrow VP \bullet PP$	[0,3]	Completer

state	rule	start/end	reason
S28	Noun $ ightarrow ullet$ flight	[2,3]	Scanner
S29	Nominal $ ightarrow$ Noun $ullet$	[2,3]	Completer
S30	$\mathit{NP} ightarrow \mathit{Det}$ $\mathit{Nominal}$ $ullet$	[1,3]	Completer
S31	Nominal $ ightarrow$ Nominal • Noun	[2,3]	Completer
S32	Nominal $ ightarrow$ Nominal • PP	[2,3]	Completer
S33	$V\!P ightarrow V\!erb NP ullet$	[0,3]	Completer
S34	$VP ightarrow Verb \ NP ullet \ PP$	[0,3]	Completer
S35	PP ightarrow Prep ullet NP	[3,3]	Predictor
S36	S ightarrow VP ullet	[0,3]	Completer
S37	$VP \rightarrow VP \bullet PP$	[0,3]	Completer

state	rule	start/end	reason
S28	Noun $ ightarrow ullet$ flight	[2,3]	Scanner
S29	Nominal $ ightarrow$ Noun $ullet$	[2,3]	Completer
S30	NP ightarrow Det Nominal $ullet$	[1,3]	Completer
S31	Nominal $ ightarrow$ Nominal • Noun	[2,3]	Completer
S32	Nominal $ ightarrow$ Nominal • PP	[2,3]	Completer
S33	$VP ightarrow Verb \; NP \; ullet$	[0,3]	Completer
S34	$VP ightarrow Verb \ NP ullet \ PP$	[0,3]	Completer
S35	PP ightarrow Prep ullet NP	[3,3]	Predictor
S36	S ightarrow VP ullet	[0,3]	Completer
S37	$VP \rightarrow VP \bullet PP$	[0,3]	Completer

The Earley Algorithm

function EARLEY-PARSE(words, grammar) returns chart

```
ENQUEUE((\gamma \rightarrow \bullet S, [0,0]), chart[0])
for i \leftarrow from 0 to LENGTH(words) do
 for each state in chart[i] do
   if INCOMPLETE?(state) and
            NEXT-CAT(state) is not a part of speech then
      PREDICTOR(state)
   elseif INCOMPLETE?(state) and
            NEXT-CAT(state) is a part of speech then
       SCANNER(state)
   else
      COMPLETER(state)
 end
end
return(chart)
```

The Earley Algorithm

```
procedure PREDICTOR((A \rightarrow \alpha \bullet B \beta, [i, j]))
   for each (B \rightarrow \gamma) in GRAMMAR-RULES-FOR(B, grammar) do
         ENOUEUE((B \rightarrow \bullet \gamma, [i, i]), chart[i])
   end
procedure SCANNER((A \rightarrow \alpha \bullet B \beta, [i, j]))
   if B \subset PARTS-OF-SPEECH(word[i]) then
        ENQUEUE((B \rightarrow word[i], [i, i+1]), chart[i+1])
procedure COMPLETER((B \rightarrow \gamma \bullet, [j,k]))
   for each (A \rightarrow \alpha \bullet B \beta, [i, j]) in chart[j] do
         ENQUEUE((A \rightarrow \alpha B \bullet \beta, [i,k]), chart[k])
   end
```

Earley: Pseudo-code Simplified

To make things easier to define, we will assume all strings end in \$ and that there is a special additional top-level symbol S' with rule $S' \rightarrow S$ \$.

Parsing an input $x = x1 \cdots x_n$ \$. S_i will be a state of Earley chart items with an ending point *i*.

Start with $S_0 = \{[S' \rightarrow \bullet S\$, 0, 0]\}$. Then, for $0 \le i \le n$ do:

- 1. Process each item $s \in S_i$ in order by applying to it the *single* applicable operation among:
 - Predictor (adds new items to S_i)
 - Completer (adds new items to S_i)
 - Scanner (adds new items to S_{i+1})

2. If $S_{i+1} = \emptyset$ *Reject* the input

3. If i = n and $S_{n+1} = \{[S' \rightarrow S \$ \bullet, 0, n+1]\}$ Accept the input

Parsing the Input

As with CYK we have formulated a recognizer. We can change it to a parser by adding backpointers so that each state knows where it came from.

Chart[1]	S12	$\mathit{Verb} ightarrow \mathit{book} ullet$	[0,1]	Scanner
Chart[2]	S23	Det $ ightarrow$ that $ullet$	[1,2]	Scanner
Chart[3]	S28	Noun $ ightarrow$ flight $ullet$	[2,3]	Scanner
	S29	Nominal $ ightarrow$ Noun $ullet$	[2,3]	(S28)
	S30	NP ightarrow Det Nominal ullet	[1,3]	(S23, S29)
	S33	$VP ightarrow Verb \ NP \ ullet$	[0,3]	(S12, S30)
	S36	S ightarrow VP ullet	[0,3]	(S33)

Comparing Earley and CYK

- For such a simple example, there seems to be a lot of useless stuff in the chart.
- We are predicting phrases that aren't there at all!
- That's the flipside to the CYK problem.

Comparing Earley and CYK

- For such a simple example, there seems to be a lot of useless stuff in the chart.
- We are predicting phrases that aren't there at all!
- That's the flipside to the CYK problem.

Did we solve ambiguity?

Comparing Earley and CYK

- For such a simple example, there seems to be a lot of useless stuff in the chart.
- We are predicting phrases that aren't there at all!
- That's the flipside to the CYK problem.

Did we solve ambiguity? Both CYK and Earley may result in multiple S structures for the [0, N] table entry. Of course, neither can tell us which one is 'right'.

The Asymptotic Complexity of Earley and CKY

- Both algorithms are cubic in n (length of string)
- ► CKY needs to construct O(n²) elements in the chart (in the worst-case), and processing each element to create it is O(n), so it is O(n³) in total
- ► Earley also needs to construct O(n²) elements, and the COMPLETER operation takes O(n) time. It could potentially run on O(n²) elements, so the complexity is again O(n³)

More about Asymptotic Complexity of Earley

- The COMPLETER operation really takes $O(i^2)$ at iteration i
- ► For unambiguous grammars, Earley shows that the COMPLETER operation can take at most *O*(*i*) time
- This means that the complexity for unambiguous grammars is O(n²)
- ► There are also some specialised grammars for which the Earley algorithm takes *O*(*n*) time

What happens if we run the Earley algorithm on a grammar in Chomsky normal form?

- This is essentially CKY with top-down filtering
- It will only create (completed) elements in the chart, if there is a left-most derivation that leads to that constituent

Summary

- The Earley algorithm uses dynamic programming to implement a top-down search strategy.
- Single left to right pass that fills chart with entries.
- Dotted rule represents progress in recognizing RHS of rule.
- Algorithm always moves forward, never backtracks to previous chart entry, once it has moved on.
- States are processed using PREDICTOR, COMPLETER, SCANNER operations.

Reading: Same as for Lecture 20

Next lecture: Resolving ambiguity using statistical parsing.