
Earley Parsing
Informatics 2A: Lecture 21

Shay Cohen

5 November 2018

1 / 27

A succinct representation of CKY

We have a Boolean table called Chart, such that Chart[A, i , j] is
true if there is a sub-phrase according the grammar that dominates
words i through words j

Build this chart recursively, similarly to the Viterbi algorithm:

For j > i + 1:

Chart[A, i , j] =

j−1∨
k=i+1

∨
A→B C

Chart[B, i , k] ∧ Chart[C , k, j]

Seed the chart, for i + 1 = j :
Chart[A, i , i + 1] = True if there exists a rule A→ wi+1 where
wi+1 is the (i + 1)th word in the string

2 / 27

Computational complexity of CKY

We use big-O notation

We count how many “basic operations” it takes to fill-in the CYK
chart as a function of the length of the sentence n

The CKY algorithm loops over: splitting points (O(n)), beginning
point (O(n)) and end points in spans (O(n)) – as such, its
complexity is O(n3)

What would be the complexity as a function of the size of the
grammar |G |?

3 / 27

Note about CYK

The CYK algorithm parses input strings in Chomsky normal form.
Can you see how to change it to an algorithm with an arbitrary
RHS length (of only nonterminals)?

We would have to split a given span into all possible subspans
according to the length of the RHS. What is the complexity of
such algorithm?

Still O(n2) charts, but now it takes O(nk−1) time to process each
cell, where k is the maximal length of an RHS. Therefore:
O(nk+1). For CYK, k = 2.

Can we do better than that?

4 / 27

Note about CYK

The CYK algorithm parses input strings in Chomsky normal form.
Can you see how to change it to an algorithm with an arbitrary
RHS length (of only nonterminals)?

We would have to split a given span into all possible subspans
according to the length of the RHS. What is the complexity of
such algorithm?

Still O(n2) charts, but now it takes O(nk−1) time to process each
cell, where k is the maximal length of an RHS. Therefore:
O(nk+1). For CYK, k = 2.

Can we do better than that?

4 / 27

Note about CYK

The CYK algorithm parses input strings in Chomsky normal form.
Can you see how to change it to an algorithm with an arbitrary
RHS length (of only nonterminals)?

We would have to split a given span into all possible subspans
according to the length of the RHS. What is the complexity of
such algorithm?

Still O(n2) charts, but now it takes O(nk−1) time to process each
cell, where k is the maximal length of an RHS. Therefore:
O(nk+1). For CYK, k = 2.

Can we do better than that?

4 / 27

A Simple Grammar: The Problem with CKY

Consider this simple grammar in Chomsky normal form:

Binary rules Lexical rules
S → B X X → a
X → X X B → b
S → C Y Y → a
Y → Y Y C → c

What is the language of this grammar?

(b|c)a+

What will CKY do if we try to parse baaaaa?

What will CKY do if we try to parse caaaaa?

5 / 27

A Simple Grammar: The Problem with CKY

Consider this simple grammar in Chomsky normal form:

Binary rules Lexical rules
S → B X X → a
X → X X B → b
S → C Y Y → a
Y → Y Y C → c

What is the language of this grammar? (b|c)a+

What will CKY do if we try to parse baaaaa?

What will CKY do if we try to parse caaaaa?

5 / 27

A Simple Grammar: The Problem with CKY

Consider this simple grammar in Chomsky normal form:

Binary rules Lexical rules
S → B X X → a
X → X X B → b
S → C Y Y → a
Y → Y Y C → c

What is the language of this grammar? (b|c)a+

What will CKY do if we try to parse baaaaa?

What will CKY do if we try to parse caaaaa?

5 / 27

CYK Chart entries

The CYK algorithm avoids redundant work by storing in a chart all
the constituents it finds.

But it populates the table with phantom constituents, that don’t
form part of any complete parse. Can be a significant problem in
long sentences.

The idea of the Earley algorithm is to avoid this, by only building
constituents that are compatible with the input read so far.

6 / 27

Earley Parsing

Key idea: as well as completed productions (ones whose entire
RHS have been recognized), we also record incomplete productions
(ones for which there may so far be only partial evidence).

I Incomplete productions (aka incomplete constituents) are
effectively predictions about what might come next and what
will be learned from finding it.

I Incomplete constituents can be represented using an extended
form of production rule called a dotted rule, e.g.
VP → V • NP.

I The dot indicates how much of the RHS has already been
found. The rest is a prediction of what is to come.

7 / 27

Earley Parsing

I Allows arbitrary CFGs

I Top-down control

I Fills a table in a single sweep over the input
I Table entries represent:

I Completed constituents and their locations
I In-progress constituents
I Predicted constituents

8 / 27

States

The table entries are called states and are represented with
dotted-rules.

S → • VP [0,0] A VP is predicted at the start
of the sentence

NP → Det • Nominal [1,2] An NP is in progress; seen Det,
Nominal is expected

VP → V NP •[0,3] A VP has been found starting
at 0 and ending at 3

Once chart is populated there should be an S the final column that
spans from 0 to N and is complete: S → α • [0,N]. If that’s the
case you’re done.

9 / 27

Sketch of Earley Algorithm

1. Predict all the states you can upfront, working top-down
from S

2. For each word in the input:

2.1 Scan in the word.
2.2 Complete or extend existing states based on matches.
2.3 Add new predictions.

3. When out of words, look at the chart to see if you have a
winner.

The algorithm uses three basic operations to process states in the
chart: Predictor and Completer add states to the chart entry
being processed; Scanner adds a state to the next chart entry.

10 / 27

Predictor

I Creates new states representing top-down expectations

I Applied to any state that has a non-terminal (other than a
part-of-speech category) immediately to right of dot

I Application results in creation of one new state for each
alternative expansion of that non-terminal

I New states placed into same chart entry as generating state

S → •VP , [0,0]
VP → • Verb, [0,0]
VP → • Verb NP, [0,0]
VP → • Verb NP PP, [0,0]
VP → • Verb PP, [0,0]
VP → • VP PP, [0,0]

11 / 27

Scanner

I Applies to states with a part-of-speech category to right of dot

I Incorporates into chart a state corresponding to prediction of
a word with particular part-of-speech

I Creates new state from input state with dot advanced over
predicted input category

I Unlike CYK, only parts-of-speech of a word that are predicted
by some existing state will enter the chart (top-down input)

VP → • Verb NP , [0,0]

VP → book • NP, [0,1]

12 / 27

Completer

I Applied to state when its dot has reached right end of the rule

I This means that parser has successfully discovered a particular
grammatical category over some span of the input

I Completer finds and advances all previously created states
that were looking for this category at this position in input

I Creates states copying the older state, advancing dot over
expected category, and installing new state in chart

NP → Det Nominal •, [1,3]
finds state VP → Verb • NP, [0,1]
finds state VP → Verb • NP PP, [0,1]

adds complete state VP → Verb NP •, [0,3]
adds incomplete state VP → Verb NP • PP, [0,3]

13 / 27

Completer

I Applied to state when its dot has reached right end of the rule

I This means that parser has successfully discovered a particular
grammatical category over some span of the input

I Completer finds and advances all previously created states
that were looking for this category at this position in input

I Creates states copying the older state, advancing dot over
expected category, and installing new state in chart

NP → Det Nominal •, [1,3]
finds state VP → Verb • NP, [0,1]
finds state VP → Verb • NP PP, [0,1]
adds complete state VP → Verb NP •, [0,3]
adds incomplete state VP → Verb NP • PP, [0,3]

13 / 27

Earley parsing: example

We will use the grammar to parse the sentence “Book that flight”.

Grammar Rules
S → NP VP VP → Verb
S → Aux NP VP VP → Verb NP
S → VP VP → Verb NP PP
NP → Pronoun VP → Verb PP
NP → Proper -Noun VP → VP PP
NP → Det Nominal PP → Preposition NP
Nominal → Noun Verb → book|include|prefer
Nominal → Nominal Noun Noun→ book|flight|meal
Nominal → Nominal PP Det → that|this|these

14 / 27

Earley parsing: example[0]

state rule start/end reason

S1 S → • NP VP [0,0] Predictor
S2 S → • Aux NP VP [0,0] Predictor
S3 S → • VP [0,0] Predictor
S4 NP → • Pronoun [0,0] Predictor
S5 NP → • Proper -Noun [0,0] Predictor
S6 NP → • Det Nominal [0,0] Predictor
S7 VP → • Verb [0,0] Predictor
S8 VP → • Verb NP [0,0] Predictor
S9 VP → • Verb NP PP [0,0] Predictor

S10 VP → • Verb PP [0,0] Predictor
S11 VP → • VP PP [0,0] Predictor

15 / 27

Earley parsing: example[0]

state rule start/end reason

S1 S → • NP VP [0,0] Predictor
S2 S → • Aux NP VP [0,0] Predictor
S3 S → • VP [0,0] Predictor
S4 NP → • Pronoun [0,0] Predictor
S5 NP → • Proper -Noun [0,0] Predictor
S6 NP → • Det Nominal [0,0] Predictor
S7 VP → • Verb [0,0] Predictor
S8 VP → • Verb NP [0,0] Predictor
S9 VP → • Verb NP PP [0,0] Predictor

S10 VP → • Verb PP [0,0] Predictor
S11 VP → • VP PP [0,0] Predictor

15 / 27

Earley parsing: example[0]

state rule start/end reason

S1 S → • NP VP [0,0] Predictor
S2 S → • Aux NP VP [0,0] Predictor
S3 S → • VP [0,0] Predictor
S4 NP → • Pronoun [0,0] Predictor
S5 NP → • Proper -Noun [0,0] Predictor
S6 NP → • Det Nominal [0,0] Predictor
S7 VP → • Verb [0,0] Predictor
S8 VP → • Verb NP [0,0] Predictor
S9 VP → • Verb NP PP [0,0] Predictor

S10 VP → • Verb PP [0,0] Predictor
S11 VP → • VP PP [0,0] Predictor

15 / 27

Earley parsing: example[0]

state rule start/end reason

S1 S → • NP VP [0,0] Predictor
S2 S → • Aux NP VP [0,0] Predictor
S3 S → • VP [0,0] Predictor
S4 NP → • Pronoun [0,0] Predictor
S5 NP → • Proper -Noun [0,0] Predictor
S6 NP → • Det Nominal [0,0] Predictor
S7 VP → • Verb [0,0] Predictor
S8 VP → • Verb NP [0,0] Predictor
S9 VP → • Verb NP PP [0,0] Predictor

S10 VP → • Verb PP [0,0] Predictor
S11 VP → • VP PP [0,0] Predictor

15 / 27

Earley parsing: example[0]

state rule start/end reason

S1 S → • NP VP [0,0] Predictor
S2 S → • Aux NP VP [0,0] Predictor
S3 S → • VP [0,0] Predictor
S4 NP → • Pronoun [0,0] Predictor
S5 NP → • Proper -Noun [0,0] Predictor
S6 NP → • Det Nominal [0,0] Predictor
S7 VP → • Verb [0,0] Predictor
S8 VP → • Verb NP [0,0] Predictor
S9 VP → • Verb NP PP [0,0] Predictor

S10 VP → • Verb PP [0,0] Predictor
S11 VP → • VP PP [0,0] Predictor

15 / 27

Earley parsing: example[0]

state rule start/end reason

S1 S → • NP VP [0,0] Predictor
S2 S → • Aux NP VP [0,0] Predictor
S3 S → • VP [0,0] Predictor
S4 NP → • Pronoun [0,0] Predictor
S5 NP → • Proper -Noun [0,0] Predictor
S6 NP → • Det Nominal [0,0] Predictor
S7 VP → • Verb [0,0] Predictor
S8 VP → • Verb NP [0,0] Predictor
S9 VP → • Verb NP PP [0,0] Predictor

S10 VP → • Verb PP [0,0] Predictor
S11 VP → • VP PP [0,0] Predictor

15 / 27

Earley parsing: example[1]

state rule start/end reason

S12 Verb → book • [0,1] Scanner
S13 VP → Verb • [0,1] Completer
S14 VP → Verb • NP [0,1] Completer
S15 VP → Verb • NP PP [0,1] Completer
S16 VP → Verb • PP [0,1] Completer
S17 S → VP • [0,1] Completer
S18 VP → VP • PP [1,1] Completer
S19 NP → • Pronoun [1,1] Predictor
S20 NP → • Proper -Noun [1,1] Predictor
S21 NP → • Det Nominal [1,1] Predictor
S22 PP → • Prep NP [1,1] Predictor

16 / 27

Earley parsing: example[1]

state rule start/end reason

S12 Verb → book • [0,1] Scanner
S13 VP → Verb • [0,1] Completer
S14 VP → Verb • NP [0,1] Completer
S15 VP → Verb • NP PP [0,1] Completer
S16 VP → Verb • PP [0,1] Completer
S17 S → VP • [0,1] Completer
S18 VP → VP • PP [1,1] Completer
S19 NP → • Pronoun [1,1] Predictor
S20 NP → • Proper -Noun [1,1] Predictor
S21 NP → • Det Nominal [1,1] Predictor
S22 PP → • Prep NP [1,1] Predictor

16 / 27

Earley parsing: example[1]

state rule start/end reason

S12 Verb → book • [0,1] Scanner
S13 VP → Verb • [0,1] Completer
S14 VP → Verb • NP [0,1] Completer
S15 VP → Verb • NP PP [0,1] Completer
S16 VP → Verb • PP [0,1] Completer
S17 S → VP • [0,1] Completer
S18 VP → VP • PP [1,1] Completer
S19 NP → • Pronoun [1,1] Predictor
S20 NP → • Proper -Noun [1,1] Predictor
S21 NP → • Det Nominal [1,1] Predictor
S22 PP → • Prep NP [1,1] Predictor

16 / 27

Earley parsing: example[1]

state rule start/end reason

S12 Verb → book • [0,1] Scanner
S13 VP → Verb • [0,1] Completer
S14 VP → Verb • NP [0,1] Completer
S15 VP → Verb • NP PP [0,1] Completer
S16 VP → Verb • PP [0,1] Completer
S17 S → VP • [0,1] Completer
S18 VP → VP • PP [1,1] Completer
S19 NP → • Pronoun [1,1] Predictor
S20 NP → • Proper -Noun [1,1] Predictor
S21 NP → • Det Nominal [1,1] Predictor
S22 PP → • Prep NP [1,1] Predictor

16 / 27

Earley parsing: example[1]

state rule start/end reason

S12 Verb → book • [0,1] Scanner
S13 VP → Verb • [0,1] Completer
S14 VP → Verb • NP [0,1] Completer
S15 VP → Verb • NP PP [0,1] Completer
S16 VP → Verb • PP [0,1] Completer
S17 S → VP • [0,1] Completer
S18 VP → VP • PP [1,1] Completer
S19 NP → • Pronoun [1,1] Predictor
S20 NP → • Proper -Noun [1,1] Predictor
S21 NP → • Det Nominal [1,1] Predictor
S22 PP → • Prep NP [1,1] Predictor

16 / 27

Earley parsing: example[1]

state rule start/end reason

S12 Verb → book • [0,1] Scanner
S13 VP → Verb • [0,1] Completer
S14 VP → Verb • NP [0,1] Completer
S15 VP → Verb • NP PP [0,1] Completer
S16 VP → Verb • PP [0,1] Completer
S17 S → VP • [0,1] Completer
S18 VP → VP • PP [1,1] Completer
S19 NP → • Pronoun [1,1] Predictor
S20 NP → • Proper -Noun [1,1] Predictor
S21 NP → • Det Nominal [1,1] Predictor
S22 PP → • Prep NP [1,1] Predictor

16 / 27

Earley parsing: example[1]

state rule start/end reason

S12 Verb → book • [0,1] Scanner
S13 VP → Verb • [0,1] Completer
S14 VP → Verb • NP [0,1] Completer
S15 VP → Verb • NP PP [0,1] Completer
S16 VP → Verb • PP [0,1] Completer
S17 S → VP • [0,1] Completer
S18 VP → VP • PP [1,1] Completer
S19 NP → • Pronoun [1,1] Predictor
S20 NP → • Proper -Noun [1,1] Predictor
S21 NP → • Det Nominal [1,1] Predictor
S22 PP → • Prep NP [1,1] Predictor

16 / 27

Earley parsing: example[1]

state rule start/end reason

S12 Verb → book • [0,1] Scanner
S13 VP → Verb • [0,1] Completer
S14 VP → Verb • NP [0,1] Completer
S15 VP → Verb • NP PP [0,1] Completer
S16 VP → Verb • PP [0,1] Completer
S17 S → VP • [0,1] Completer
S18 VP → VP • PP [1,1] Completer
S19 NP → • Pronoun [1,1] Predictor
S20 NP → • Proper -Noun [1,1] Predictor
S21 NP → • Det Nominal [1,1] Predictor
S22 PP → • Prep NP [1,1] Predictor

16 / 27

Earley parsing: example[2]

state rule start/end reason

S23 Det → that • [1,2] Scanner
S24 NP → Det • Nominal [1,2] Completer
S25 Nominal → • Noun [2,2] Predictor
S26 Nominal → • Nominal Noun [2,2] Predictor
S27 Nominal → • Nominal PP [2,2] Predictor

17 / 27

Earley parsing: example[2]

state rule start/end reason

S23 Det → that • [1,2] Scanner
S24 NP → Det • Nominal [1,2] Completer
S25 Nominal → • Noun [2,2] Predictor
S26 Nominal → • Nominal Noun [2,2] Predictor
S27 Nominal → • Nominal PP [2,2] Predictor

17 / 27

Earley parsing: example[2]

state rule start/end reason

S23 Det → that • [1,2] Scanner
S24 NP → Det • Nominal [1,2] Completer
S25 Nominal → • Noun [2,2] Predictor
S26 Nominal → • Nominal Noun [2,2] Predictor
S27 Nominal → • Nominal PP [2,2] Predictor

17 / 27

Earley parsing: example[2]

state rule start/end reason

S23 Det → that • [1,2] Scanner
S24 NP → Det • Nominal [1,2] Completer
S25 Nominal → • Noun [2,2] Predictor
S26 Nominal → • Nominal Noun [2,2] Predictor
S27 Nominal → • Nominal PP [2,2] Predictor

17 / 27

Earley parsing: example[3]

state rule start/end reason

S28 Noun→ • flight [2,3] Scanner
S29 Nominal → Noun • [2,3] Completer
S30 NP → Det Nominal • [1,3] Completer
S31 Nominal → Nominal • Noun [2,3] Completer
S32 Nominal → Nominal • PP [2,3] Completer
S33 VP → Verb NP • [0,3] Completer
S34 VP → Verb NP • PP [0,3] Completer
S35 PP → Prep • NP [3,3] Predictor
S36 S → VP • [0,3] Completer
S37 VP → VP • PP [0,3] Completer

18 / 27

Earley parsing: example[3]

state rule start/end reason

S28 Noun→ • flight [2,3] Scanner
S29 Nominal → Noun • [2,3] Completer
S30 NP → Det Nominal • [1,3] Completer
S31 Nominal → Nominal • Noun [2,3] Completer
S32 Nominal → Nominal • PP [2,3] Completer
S33 VP → Verb NP • [0,3] Completer
S34 VP → Verb NP • PP [0,3] Completer
S35 PP → Prep • NP [3,3] Predictor
S36 S → VP • [0,3] Completer
S37 VP → VP • PP [0,3] Completer

18 / 27

Earley parsing: example[3]

state rule start/end reason

S28 Noun→ • flight [2,3] Scanner
S29 Nominal → Noun • [2,3] Completer
S30 NP → Det Nominal • [1,3] Completer
S31 Nominal → Nominal • Noun [2,3] Completer
S32 Nominal → Nominal • PP [2,3] Completer
S33 VP → Verb NP • [0,3] Completer
S34 VP → Verb NP • PP [0,3] Completer
S35 PP → Prep • NP [3,3] Predictor
S36 S → VP • [0,3] Completer
S37 VP → VP • PP [0,3] Completer

18 / 27

Earley parsing: example[3]

state rule start/end reason

S28 Noun→ • flight [2,3] Scanner
S29 Nominal → Noun • [2,3] Completer
S30 NP → Det Nominal • [1,3] Completer
S31 Nominal → Nominal • Noun [2,3] Completer
S32 Nominal → Nominal • PP [2,3] Completer
S33 VP → Verb NP • [0,3] Completer
S34 VP → Verb NP • PP [0,3] Completer
S35 PP → Prep • NP [3,3] Predictor
S36 S → VP • [0,3] Completer
S37 VP → VP • PP [0,3] Completer

18 / 27

The Earley Algorithm

19 / 27

The Earley Algorithm

20 / 27

Earley: Pseudo-code Simplified

To make things easier to define, we will assume all strings end in $
and that there is a special additional top-level symbol S ′ with rule
S ′ → S$.

Parsing an input x = x1 · · · xn$. Si will be a state of Earley chart
items with an ending point i .

Start with S0 = {[S ′ → •S$, 0, 0]}. Then, for 0 ≤ i ≤ n do:

1. Process each item s ∈ Si in order by applying to it the single
applicable operation among:

I Predictor (adds new items to Si)
I Completer (adds new items to Si)
I Scanner (adds new items to Si+1)

2. If Si+1 = ∅ Reject the input

3. If i = n and Sn+1 = {[S ′ → S$•, 0, n + 1]} Accept the input

21 / 27

Parsing the Input

As with CYK we have formulated a recognizer. We can change it
to a parser by adding backpointers so that each state knows where
it came from.

Chart[1] S12 Verb → book • [0,1] Scanner
Chart[2] S23 Det → that • [1,2] Scanner
Chart[3] S28 Noun→ flight • [2,3] Scanner

S29 Nominal → Noun • [2,3] (S28)
S30 NP → Det Nominal • [1,3] (S23, S29)
S33 VP → Verb NP • [0,3] (S12, S30)
S36 S → VP • [0,3] (S33)

22 / 27

Comparing Earley and CYK

I For such a simple example, there seems to be a lot of useless
stuff in the chart.

I We are predicting phrases that aren’t there at all!

I That’s the flipside to the CYK problem.

Did we solve ambiguity? Both CYK and Earley may result in
multiple S structures for the [0,N] table entry. Of course, neither
can tell us which one is ‘right’.

23 / 27

Comparing Earley and CYK

I For such a simple example, there seems to be a lot of useless
stuff in the chart.

I We are predicting phrases that aren’t there at all!

I That’s the flipside to the CYK problem.

Did we solve ambiguity?

Both CYK and Earley may result in
multiple S structures for the [0,N] table entry. Of course, neither
can tell us which one is ‘right’.

23 / 27

Comparing Earley and CYK

I For such a simple example, there seems to be a lot of useless
stuff in the chart.

I We are predicting phrases that aren’t there at all!

I That’s the flipside to the CYK problem.

Did we solve ambiguity? Both CYK and Earley may result in
multiple S structures for the [0,N] table entry. Of course, neither
can tell us which one is ‘right’.

23 / 27

The Asymptotic Complexity of Earley and CKY

I Both algorithms are cubic in n (length of string)

I CKY needs to construct O(n2) elements in the chart (in the
worst-case), and processing each element to create it is O(n),
so it is O(n3) in total

I Earley also needs to construct O(n2) elements, and the
Completer operation takes O(n) time. It could potentially
run on O(n2) elements, so the complexity is again O(n3)

24 / 27

More about Asymptotic Complexity of Earley

I The Completer operation really takes O(i2) at iteration i

I For unambiguous grammars, Earley shows that the
Completer operation can take at most O(i) time

I This means that the complexity for unambiguous grammars is
O(n2)

I There are also some specialised grammars for which the Earley
algorithm takes O(n) time

25 / 27

Connection between the Earley Algorithm and CKY

What happens if we run the Earley algorithm on a grammar in
Chomsky normal form?

I This is essentially CKY with top-down filtering

I It will only create (completed) elements in the chart, if there
is a left-most derivation that leads to that constituent

26 / 27

Summary

I The Earley algorithm uses dynamic programming to
implement a top-down search strategy.

I Single left to right pass that fills chart with entries.

I Dotted rule represents progress in recognizing RHS of rule.

I Algorithm always moves forward, never backtracks to previous
chart entry, once it has moved on.

I States are processed using Predictor, Completer,
Scanner operations.

Reading: Same as for Lecture 20
Next lecture: Resolving ambiguity using statistical parsing.

27 / 27

	The CYK chart as a graph
	What's wrong with CYK
	Adding Prediction to the Chart

	The Earley Parsing Algorithm
	The Predictor Operator
	The Scanner Operator
	The Completer Operator
	Earley parsing: example
	Comparing Earley and CYK

