
Fixing problems with grammars
Informatics 2A: Lecture 13

Mary Cryan

School of Informatics
University of Edinburgh
mcryan@inf.ed.ac.uk

15 and 17 October 2018

1 / 20

mcryan@inf.ed.ac.uk

LL(1) grammars: summary

Given a context-free grammar, the problem of parsing a string can
be seen as that of constructing a leftmost derivation, e.g.

Exp ⇒ Exp + Exp ⇒ Num + Exp ⇒ 1 + Exp
⇒ 1 + Num ⇒ 1 + 2

At each stage, we expand the leftmost nonterminal. In general, it
(seemingly) requires magical powers to know which rule to apply.

An LL(1) grammar is one in which the correct rule can always be
determined from just the nonterminal to be expanded and the
current input symbol (or end-of-input marker).

This leads to the idea of a parse table: a two-dimensional array
(indexed by nonterminals and input symbols) in which the
appropriate production can be looked up at each stage.

2 / 20

Possible problems with grammars

LL(1) grammars allow for very efficient parsing (time linear in
length of input string). Unfortunately, many “natural” grammars
are not LL(1), for various reasons, e.g.

1. They may be ambiguous (bad for computer languages)

2. They may have rules with shared prefixes: e.g. how would we
choose between the following productions?

Stmt → do Stmt while Cond

Stmt → do Stmt until Cond

3. There may be left-recursive rules, where the LHS nonterminal
appears at the start of the RHS: Exp → Exp + Exp

Sometimes such problems can be fixed: can replace our grammar
by an equivalent LL(1) one. We’ll look at ways of doing this.

Reminder: Ambiguous ≡ some strings have more than one syntax
tree wrt the grammar.

3 / 20

Problem 1: Ambiguity

We’ve seen many examples of ambiguous grammars. Some kinds of
ambiguity are ‘needless’ and can be easily avoided. E.g. can replace

List → ε | Item | List List

by
List → ε | Item List

A similar trick works generally for any other kind of ‘lists’.
E.g. can replace

List1 → Item | List1 ; List1

by
List1 → Item Rest Rest → ε | ; Item Rest

4 / 20

Resolving ambiguity with added nonterminals

More serious example of ambiguity:

Exp → Num | Var | (Exp) | − Exp

| Exp + Exp | Exp− Exp | Exp ∗ Exp

We can disambiguate this by adding nonterminals to capture more
subtle distinctions between different classes of expressions:

Exp → ExpA | Exp + ExpA | Exp− ExpA

ExpA → ExpB | ExpA ∗ ExpB

ExpB → ExpC | − ExpB

ExpC → Num | Var | (Exp)

Note that this builds in certain design decisions concerning what
we want the rules of precedence to be.

N.B. our revised grammar is unambiguous, but not yet LL(1) . . .

5 / 20

Problem 2: Shared prefixes

Consider the two productions

Stmt → do Stmt while Cond

Stmt → do Stmt until Cond

On seeing the nonterminal Stmt and the terminal do, an LL(1)
parser would have no way of choosing between these rules.

Solution: factor out the common part of these rules, so ‘delaying’
the decision until the relevant information becomes available:

Stmt → do Stmt Test

Test → while Cond | until Cond

This simple trick is known as left factoring.

6 / 20

Problem 3: Left recursion

Suppose our grammar contains a rule like

Exp → Exp + ExpA

Problem: whatever terminals Exp could begin with, Exp + ExpA
could also begin with. So there’s a danger our parser would apply
this rule indefinitely:

Exp ⇒ Exp + ExpA ⇒ Exp + ExpA + ExpA ⇒ · · ·

(In practice, we wouldn’t even get this far: there’d be a clash in the
parse table, e.g. at Num,Exp.)

So left recursion makes a grammar non-LL(1).

7 / 20

Eliminating left recursion

Consider e.g. the rules

Exp → ExpA | Exp + ExpA | Exp− ExpA

Taken together, these say that Exp can consist of ExpA followed
by zero or more suffixes + ExpA or − ExpA (important that these
were the only rules with Exp on lhs).

So we just need to formalize this!

Exp → ExpA OpsA OpsA → ε | + ExpA OpsA | − ExpA OpsA

(Reminiscent of Arden’s rule.) Likewise:

ExpA → ExpB OpsB OpsB → ε | ∗ ExpB OpsB

Together with the earlier rules for ExpB and ExpC, these give an
LL(1) version of the grammar for arithmetic expressions on slide 5.

8 / 20

The resulting LL(1) grammar

Exp → ExpA OpsA

OpsA → ε | + ExpA OpsA | − ExpA OpsA

ExpA → ExpB OpsB

OpsB → ε | ∗ ExpB OpsB

ExpB → ExpC | − ExpB

ExpC → Num | Var | (Exp)

Has none of the aforementioned Problems 1, 2, 3

9 / 20

Indirect left recursion

Left recursion can also arise in a more indirect way. E.g.

A → a | Bc B → b | Ad

By considering the combined effect of these rules, can see that
they are equivalent to the following LL(1) grammar.

A → aE | bcE B → bF | adF
E → ε | dcE F → ε | cdF

(Won’t go into the systematic method here.)

10 / 20

LL(1) grammars: summary

I Often (not always), a “natural” grammar for some language
of interest can be massaged into an LL(1) grammar. This
allows for very efficient parsing.

I Knowing a grammar is LL(1) also assures us that it is
unambiguous — often non-trivial! By the same token, LL(1)
grammars are poorly suited to natural languages.

I However, an LL(1) grammar may be less readable and intuitive
than the original. It may also appear to mutilate the ‘natural’
structure of phrases. Hopefully we won’t have mutilated it so
much we can n o longer ‘execute’ the phrase as intended.

I One can design realistic computer languages with LL(1)
grammars. For less cumbersome syntax that ‘flows’ better,
one might want to go a bit beyond LL(1) (e.g. to LR(1)), but
the principles remain the same.

11 / 20

Example of an LL(1) grammar

Here is a repaired version of the programming language grammar
from Lecture 9, with ambiguity now removed. Combining it with
our revised grammar for arithmetic expressions, we get an LL(1)
grammar for a respectable programming language.

stmt → if-stmt | while-stmt | begin-stmt | assg-stmt

if-stmt → if bool-expr then stmt else stmt

while-stmt → while bool-expr do stmt

begin-stmt → begin stmt-list end

stmt-list → stmt stmts

stmts → ε | ; stmt stmts

assg-stmt → VAR := arith-expr

bool-expr → arith-expr compare-op arith-expr

compare-op → < | > | <= | >= | == | =! =

12 / 20

Small aside: Chomsky Normal Form

Whilst on the subject of ‘transforming grammars into equivalent
ones of some special kind’ . . .

A context-free grammar G = (N,Σ,P, S) is in Chomsky normal
form (CNF) if all productions are of the form

A → BC or A → a (A,B,C ∈ N, a ∈ Σ)

Theorem: Disregarding the empty string, every CFG G is equivalent
to a grammar G′ in Chomsky normal form. (L(G′) = L(G)− {ε})

This is useful, because certain general parsing algorithms (e.g. the
CYK algorithm, coming in Lecture 21) work best for grammars in
CNF.

13 / 20

Converting to Chomsky Normal Form

Consider for example the grammar

S → TT | [S] T → ε | (T)

for balanced “two-kind-of-brackets” expressions.

Step 1: remove all ε-productions, and for each rule X → αY β, add
a new rule X → αβ whenever Y ‘can be empty’.

S → TT | T | [S] | [] T → (T) | ()

Step 2: remove ‘unit productions’ X → Y where Y is not terminal.

S → TT | (T) | () | [S] | [] T → (T) | ()

Now all productions are of form X → a or X → x1 . . . xk (k ≥ 2).

14 / 20

Converting to Chomsky Normal Form, ctd.

S → TT | (T) | () | [S] | [] T → (T) | ()

Step 3: For each terminal a, add a nonterminal Za and a production
Za → a. In all rules X → x1 . . . xk (k ≥ 2), replace each a by Za.

S → TT | Z(TZ) | Z(Z) | Z[SZ] | Z[Z]

T → Z(TZ) | Z(Z) Z(→ (Z) →) Z[→ [Z] →]

Step 4: For every production X → Y1 . . .Yn with n ≥ 3, add new
symbols W2, . . . ,Wn−1 and replace the production with
X → Y1W2, W2 → Y2W3, . . . , Wn−1 → Yn−1Yn.

E.g. S → Z(TZ) | Z[SZ] become

S → Z(W W → TZ) S → Z[V V → SZ]

The resulting grammar is now in Chomsky Normal Form.
15 / 20

Test question on context-free grammars

Consider the alphabet of ASCII characters. Let N be the lexical class of
all non-alphabetic characters. Consider the following context-free
grammar for a nonterminal P.

P → ε | N P | P N

P → a | a P a | a P A | A P a | A P A | A
P → b | b P b | b P B | B P b | B P B | B

. . . (23 similar lines for ‘C’ to ‘Y’)

P → z | z P z | z P Z | Z P z | Z P Z | Z

Which of the following ASCII strings can be parsed as a P?

1. never odd or even

2. "Norma is as selfless as I am, Ron."

3. Live dirt up a side-track carted is a putrid evil.

Answer: all of them

16 / 20

Test question on context-free grammars

Consider the alphabet of ASCII characters. Let N be the lexical class of
all non-alphabetic characters. Consider the following context-free
grammar for a nonterminal P.

P → ε | N P | P N

P → a | a P a | a P A | A P a | A P A | A
P → b | b P b | b P B | B P b | B P B | B

. . . (23 similar lines for ‘C’ to ‘Y’)

P → z | z P z | z P Z | Z P z | Z P Z | Z

Which of the following ASCII strings can be parsed as a P?

1. never odd or even

2. "Norma is as selfless as I am, Ron."

3. Live dirt up a side-track carted is a putrid evil.

Answer: all of them

16 / 20

More questions

Our grammar generates palindromic strings:

P → ε | N P | P N

P → a | a P a | a P A | A P a | A P A | A
P → b | b P b | b P B | B P b | B P B | B

. . . (23 similar lines for ‘C’ to ‘Y’)

P → z | z P z | z P Z | Z P z | Z P Z | Z

Question: Is this grammar LL(1)?

Answer: No. The 3rd rule of Line 1 is left recursive, and there is much
ambiguity.

Next question: Is it possible to provide an LL(1) grammar for the
language of palindromes?

Answer: No. Intuitively, with bounded lookahead, we can’t tell when we’ve
reached the middle of the string. In fact, this language can be recognized
by an NPDA, but not by any DPDA! (LL(1)-ness would imply a DPDA)

17 / 20

More questions

Our grammar generates palindromic strings:

P → ε | N P | P N

P → a | a P a | a P A | A P a | A P A | A
P → b | b P b | b P B | B P b | B P B | B

. . . (23 similar lines for ‘C’ to ‘Y’)

P → z | z P z | z P Z | Z P z | Z P Z | Z

Question: Is this grammar LL(1)?

Answer: No. The 3rd rule of Line 1 is left recursive, and there is much
ambiguity.

Next question: Is it possible to provide an LL(1) grammar for the
language of palindromes?

Answer: No. Intuitively, with bounded lookahead, we can’t tell when we’ve
reached the middle of the string. In fact, this language can be recognized
by an NPDA, but not by any DPDA! (LL(1)-ness would imply a DPDA)

17 / 20

More questions

Our grammar generates palindromic strings:

P → ε | N P | P N

P → a | a P a | a P A | A P a | A P A | A
P → b | b P b | b P B | B P b | B P B | B

. . . (23 similar lines for ‘C’ to ‘Y’)

P → z | z P z | z P Z | Z P z | Z P Z | Z

Question: Is this grammar LL(1)?

Answer: No. The 3rd rule of Line 1 is left recursive, and there is much
ambiguity.

Next question: Is it possible to provide an LL(1) grammar for the
language of palindromes?

Answer: No. Intuitively, with bounded lookahead, we can’t tell when we’ve
reached the middle of the string. In fact, this language can be recognized
by an NPDA, but not by any DPDA! (LL(1)-ness would imply a DPDA)

17 / 20

Some light relief: Palindromic sentences

Our grammar recognises palindromic alphabetic strings, ignoring
whitespace, punctuation, case distinctions, etc.

It is not too hard to construct such strings consisting entirely of
English words. However, it’s more satisfying (and challenging) to
find examples that are coherent or interesting in some other way.

A famous example:

A man, a plan, a canal — Panama!

. . . which some smart person noticed could be tweaked to yield . . .

A dog, a plan, a canal — Pagoda!

But probably there is nothing to equal . . .

18 / 20

Some light relief: Palindromic sentences

Our grammar recognises palindromic alphabetic strings, ignoring
whitespace, punctuation, case distinctions, etc.

It is not too hard to construct such strings consisting entirely of
English words. However, it’s more satisfying (and challenging) to
find examples that are coherent or interesting in some other way.

A famous example:

A man, a plan, a canal — Panama!

. . . which some smart person noticed could be tweaked to yield . . .

A dog, a plan, a canal — Pagoda!

But probably there is nothing to equal . . .

18 / 20

Some light relief: Palindromic sentences

Our grammar recognises palindromic alphabetic strings, ignoring
whitespace, punctuation, case distinctions, etc.

It is not too hard to construct such strings consisting entirely of
English words. However, it’s more satisfying (and challenging) to
find examples that are coherent or interesting in some other way.

A famous example:

A man, a plan, a canal — Panama!

. . . which some smart person noticed could be tweaked to yield . . .

A dog, a plan, a canal — Pagoda!

But probably there is nothing to equal . . .

18 / 20

Best English palindrome in the world?

(From Guy Steele, Common Lisp Reference Manual, 1983.)

A man, a plan, a canoe, pasta, heros, rajahs, a coloratura,
maps, snipe, percale, macaroni, a gag, a banana bag, a
tan, a tag, a banana bag again (or a camel), a crepe, pins,
Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal
— Panama!

19 / 20

Reading

I Fixing problems with grammars: “former” lecture note 11
available on the Course Schedule webpage.

I Chomsky Normal Form: Kozen chapter 21, Jurafsky & Martin
section 12.5.

20 / 20

	LL(1) grammars: summary

