
Automatic generation of LL(1) parsers
Informatics 2A: Lecture 12

Mary Cryan

School of Informatics
University of Edinburgh
mcryan@inf.ed.ac.uk

12 October 2018

1 / 17

mcryan@inf.ed.ac.uk

Recap of Lecture 11

I LL(1) predictive parsing reads the input string from left to
right, and determines the correct production to apply purely
on the basis of two pieces of information: (1) the current
input symbol, and (2) the current predicted nonterminal
symbol (which is kept on the head of a stack).

I The parsing algorithm is efficient and deterministic and uses a
parse table to determine the next production.

I LL(1) parsing is suitable only for formal languages with
unambiguous grammars. Even for such languages, finding an
LL(1) grammar may require some thought.

(Addendum: Some formal languages with unambiguous
grammars cannot be given an LL(1) grammar at all.)

2 / 17

Generating parse tables

We’ve seen that if a grammar G happens to be LL(1) — i.e. if it
admits a parse table — then efficient, deterministic, predictive
parsing is possible with the help of a stack.

What’s more, if G is LL(1), G is automatically unambiguous.

But how do we tell whether a grammar is LL(1)? And if it is, how
can we construct a parse table for it?

For very small grammars, might be able to answer these questions
by eye inspection. But for realistic grammars, a systematic method
is needed.

In this lecture, we give an algorithmic procedure for answering both
questions.

3 / 17

The overall picture

algorithm
LL(1)

"Natural"
grammar grammar

LL(1)
table

LL(1) parse

Syntax
tree

Document
(input string)

parsing

(e.g. disambiguation)
Hand tweaking Table

generation
(mechanical)

once per language once per document

Previous lecture: the LL(1) parsing algorithm, which works on a
parse table and a particular input string.

This lecture: algorithm for getting from a grammar G to a parse
table. The algorithm will succeed if G is LL(1), or fail if it isn’t.
(As in previous lecture, assume G has no ‘useless nonterminals’.)

Next lecture: ways of getting from a grammar to an equivalent
LL(1) grammar. (Possible quite often, but not always.)

4 / 17

First and Follow sets

Two steps to construct a parse table for a given grammar:

1. For each nonterminal X , compute two sets called First(X)
and Follow(X), defined as follows:
I First(X) is the set of all terminals that can appear at the start

of a phrase derived from X .
[Convention: if ε can be derived from X , also include the
special symbol ε in First(X).]

I Follow(X) is the set of all terminals that can appear
immediately after X in some sentential form derived from the
start symbol S .
[Convention: if X can appear at the end of some such
sentential form, also include the special symbol $ in
Follow(X).]

2. Use these First and Follow sets to fill out the parse table.

The first step is somewhat tricky. The second is easier.

5 / 17

Exercises

I First(X) is the set of all terminals that can appear at the start
of a phrase derived from X .
[Convention: if ε can be derived from X , also include the
special symbol ε in First(X).]

Recall our LL(1) grammar for well-matched bracket sequences:

S → ε | TS T → (S)

Question. Work out each of the two sets below.

1. First(T)

2. First(S)

Answer: First(T) = {(}. First(S) = {(, ε}.

6 / 17

Exercises

I First(X) is the set of all terminals that can appear at the start
of a phrase derived from X .
[Convention: if ε can be derived from X , also include the
special symbol ε in First(X).]

Recall our LL(1) grammar for well-matched bracket sequences:

S → ε | TS T → (S)

Question. Work out each of the two sets below.

1. First(T)

2. First(S)

Answer: First(T) = {(}.

First(S) = {(, ε}.

6 / 17

Exercises

I First(X) is the set of all terminals that can appear at the start
of a phrase derived from X .
[Convention: if ε can be derived from X , also include the
special symbol ε in First(X).]

Recall our LL(1) grammar for well-matched bracket sequences:

S → ε | TS T → (S)

Question. Work out each of the two sets below.

1. First(T)

2. First(S)

Answer: First(T) = {(}. First(S) = {(, ε}.

6 / 17

More exercises

I Follow(X) is the set of all terminals that can appear
immediately after X in some sentential form derived from the
start symbol S .
[Convention: if X can appear at the end of some such
sentential form, also include $ in Follow(X).]

Again consider the same LL(1) grammar:

S → ε | TS T → (S)

Question. Work out each of the two sets below.

1. Follow(S)

2. Follow(T)

Answer: Follow(S) = {), $}. Follow(T) = {(,), $}.

7 / 17

More exercises

I Follow(X) is the set of all terminals that can appear
immediately after X in some sentential form derived from the
start symbol S .
[Convention: if X can appear at the end of some such
sentential form, also include $ in Follow(X).]

Again consider the same LL(1) grammar:

S → ε | TS T → (S)

Question. Work out each of the two sets below.

1. Follow(S)

2. Follow(T)

Answer: Follow(S) = {), $}.

Follow(T) = {(,), $}.

7 / 17

More exercises

I Follow(X) is the set of all terminals that can appear
immediately after X in some sentential form derived from the
start symbol S .
[Convention: if X can appear at the end of some such
sentential form, also include $ in Follow(X).]

Again consider the same LL(1) grammar:

S → ε | TS T → (S)

Question. Work out each of the two sets below.

1. Follow(S)

2. Follow(T)

Answer: Follow(S) = {), $}. Follow(T) = {(,), $}.

7 / 17

Those examples again

Look again at our grammar for well-matched bracket sequences:

S → ε | TS T → (S)

By inspection, we can see that

First(S) = { (, ε } because an S can begin with (or be empty
First(T) = { (} because a T must begin with (

Follow(S) = {), $ } because within a complete phrase, an S
can be followed by) or appear at the end

Follow(T) = { (,), $ } because a T can be followed by (or)
or appear at the end

Later we’ll give a systematic method for computing these sets.

Further convention: take First(a) = {a} for each terminal a.

8 / 17

Filling out the parse table

Once we’ve got these First and Follow sets, we can fill out the
parse table as follows.
For each production X → α of G in turn:

I For each terminal a, if α ‘can begin with’ a, insert X → α in
row X , column a.

I If α ‘can be empty’, then for each b ∈ Follow(X) (where b
may be $), insert X → α in row X , column b.

If doing this leads to clashes (i.e. two productions fighting for the
same table entry) then conclude that the grammar is not LL(1).

To explain the phrases in blue, suppose α = x1 . . . xn, where the xi
may be terminals or nonterminals.

I α can be empty means ε ∈ First(xi) for every xi .

I α can begin with a means that, for some i ,
ε ∈ First(x1) ∩ . . . ∩ First(xi−1), and a ∈ First(xi).

9 / 17

Comments on filling out the parse table

I The case α = ε is counted as a case in which α can be empty.

(This case is implicit in the last slide since α = ε counts as an
instance of α = x1 . . . xn by taking n = 0, whence the
condition “ε ∈ First(xi) for every xi” is vacuously true since
there are no xi .)

I Similarly, we count α = x1 . . . xn with a ∈ First(x1) as one
case in which α can begin with a.

(Again this is implicit in the last slide. The condition
ε ∈ First(x1) ∩ . . . ∩ First(xi−1) means that ε is contained in
all the sets First(x1), First(x2) up to First(xi−1). In the case
that i = 1, we consider the sequence x1, . . . , xi−1 as being
empty. Thus the condition “ε ∈ First(x1) ∩ . . . ∩ First(xi−1)”
is again vacuously true.)

10 / 17

Filling out the parse table: example

S → ε | TS T → (S)

First(S) = {(, ε} Follow(S) = {), $}
First(T) = {(} Follow(T) = {(,), $}

Use this information to fill out the parse table:

I (S) can begin with (, so insert T → (S) in entry for (,T .

I TS can begin with (, so insert S → TS in entry for (,S .

I ε can be empty, and Follow(S) = {), $}, so insert S → ε in
entries for),S and $,S .

This gives the parse table we had in the previous lecture:

() $

S S → TS S → ε S → ε
T T → (S)

11 / 17

Intermezzo: true or false?

1. Every LL(1) grammar is context free.

2. Every context-free language can be presented using an LL(1)
grammar.

3. Every regular language can be presented using an LL(1)
grammar.

4. Every LL(1) grammar is unambiguous.

5. Languages defined by LL(1) grammars can be efficiently
parsed.

Answer: 2 is false, the others are all true.

12 / 17

Intermezzo: true or false?

1. Every LL(1) grammar is context free.

2. Every context-free language can be presented using an LL(1)
grammar.

3. Every regular language can be presented using an LL(1)
grammar.

4. Every LL(1) grammar is unambiguous.

5. Languages defined by LL(1) grammars can be efficiently
parsed.

Answer: 2 is false, the others are all true.

12 / 17

Calculating First and Follow sets: preliminary stage

To complete the story, we’d like an algorithm for calculating First
and Follow sets.

Easy first step: compute the set E of nonterminals that ‘can be ε’:

1. Start by adding X to E whenever X → ε is a production of G.

2. If X → Y1 . . .Ym is a production and all Y1, . . . ,Ym are
already in E , add X to E .

3. Repeat step 2 until E stabilizes.

Example: for our grammar of well-matched bracket sequences, we
have E = {S}.

13 / 17

Calculating First sets: the details

1. Set First(a) = {a} for each a ∈ Σ. For each nonterminal X ,
initially set First(X) to {ε} if X ∈ E , or ∅ otherwise.

2. For each production X → x1 . . . xn and each i ≤ n, if
x1, . . . , xi−1 ∈ E and a ∈ First(xi), add a to First(X).

3. Repeat step 2 until all First sets stabilize.

Example:

I Start with First(S) = {ε}, First(T) = ∅, etc.

I Consider T → (S) with i = 1: add (to First(T).

I Now consider S → TS with i = 1: add (to First(S).

I That’s all.

14 / 17

Calculating Follow sets: the details

1. Initially set Follow(S) = {$} for the start symbol S , and
Follow(X) = ∅ for all other nonterminals X .

2. For each production X → α, each splitting of α as βYx1 . . . xn
where n ≥ 1, and each i with x1, . . . , xi−1 ∈ E , add all of
First(xi) (excluding ε) to Follow(Y).

3. For each production X → α and each splitting of α as βY or
βYx1 . . . xn with x1, . . . , xn ∈ E , add all of Follow(X) to
Follow(Y).

4. Repeat step 3 until all Follow sets stabilize.

Example:

I Start with Follow(S) = {$}, Follow(T) = ∅.
I Apply step 2 to T → (S) with i = 1: add) to Follow(S).

I Apply step 2 to S → TS with i = 1: add (to Follow(T).

I Apply step 3 to S → TS with n = 1: add) and $ to Follow(T).

I That’s all.

15 / 17

Parser generators

LL(1) is representative of a bunch of classes of CFGs that are
efficiently parseable. E.g. LL(1) ⊂ LALR ⊂ LR(1). These involve
various tradeoffs of expressive power vs. efficiency/simplicity.

For such languages, a parser can be generated automatically from
a suitable grammar. (E.g. for LL(1), just need parse table plus
fixed ‘driver’ for the parsing algorithm.)

So we don’t need to write parsers ourselves — just the grammar!
(E.g. one can basically define the syntax of Java in about 10 pages
of context-free rules.)

This is the principle behind parser generators like yacc (‘yet
another compiler compiler’) and java-cup.

16 / 17

Reading

I Recommended: Some relevant lecture notes (“Note 12” in
particular) and a tutorial sheet from previous years are
available via the Course Schedule webpage.

I Dragon book: Aho, Sethi and Ullman, Compilers: Principles,
Techniques and Tools, Section 4.4.

I Tiger book: Andrew Appel, Modern Compiler Implementation
in (C | Java | ML).

I Turtle book: Aho and Ullman, Foundations of Computer
Science.

17 / 17

	Generating parse tables
	Calculating First and Follow sets

