
Search, Lexing and other applications
Informatics 2A: Lecture 7

Mary Cryan

School of Informatics
University of Edinburgh
mcryan@inf.ed.ac.uk

1 October 2018

1 / 23

mcryan@inf.ed.ac.uk

Where we’re up to

In Lecture 6, we completed our study of regular expressions (and
their equivalence to the languages recognized by Finite Automata)
and started looking at some practical applications of regular
language technology to string and pattern matching.

In this lecture, we will finish looking at pattern matching, and also
discuss applications to data validation. Then we will look at:

I Lexical analysis of computer languages, etc. lexing. This is
often the first stage of the language processing pipeline for
computer languages (see Lecture 2).

I (Brief outline). Automatic verification of safety/liveness
properties for (e.g. concurrent) finite-state systems.

2 / 23

grep, egrep, fgrep

There are three related search commands, of increasing generality
and correspondingly decreasing speed:

I fgrep searches for one or more fixed strings, using an efficient
string matching algorithm.

I grep searches for strings matching a certain pattern (a simple
kind of regular expression).

I egrep searches for strings matching an extended pattern
(these give the full power of regular expressions).

On Friday, we saw how we can build a DFA to recognise a fixed
string (ie, to implement fgrep).

3 / 23

Multiple (fixed) strings

Suppose now we want to find all occurrences of any of the strings
nano, micro, milli in D.

No problem! Just do the same starting from the following NFA:

a n o

n

any char

m i c r o

m

i l l i

(The gain over the naive method is here readily apparent.)

To do more powerful searches, can use regular expressions . . .

4 / 23

Machine syntax for regular expressions

a Single character
[abc] Choice of characters
[A-Z] Any character in ASCII range
[̂ Ss] Any character except those given
. Any single character
,̂ $ Beginning, end of line
* zero or more occurrences of preceding pattern
? optional occurrence of preceding pattern
+ one or more occurrences of preceding pattern
| choice between two patterns (‘union’)

(The last three are allowed by egrep, but not by plain grep.)

This kind of syntax (with further bells and whistles) is very widely
used. In Perl/Python (including NLTK), patterns are delimited by
/.../ rather than "...".

5 / 23

Mathematical versus machine notation
We’ve now seen two notations for writing regular expressions:

I Mathematical notation, e.g. (a + b)(a + b)∗. This notation is
intended to have as few operations as possible, for
convenience in setting up the theory (e.g. Kleene algebra).

I Machine notation (regex), e.g. (a|b)+. This has a more
generous set of operations, for convenience when writing
complicated regular expressions.

The clashes between these are unfortunate, but we’re stuck with
them.

I Union of two languages is written using | in machine syntax,
and + in mathematical syntax.

I In machine syntax, + is a unary operation representing
concatenation of one or more strings of a given form.

I Dot . means concatenation in the mathematical syntax, and
‘any character’ in the machine syntax.

6 / 23

Example

How suitable are the patterns below for specifying the form of
non-negative decimal integers?

1. [0-9]*

2. [0-9]+

3. 0 | [1-9][0-9]*

4. 0 | [1-9][0-9]?[0-9]?(,[0-9][0-9][0-9])*

Answer: Pattern 1 is bad, because it admits the empty string.
Pattern 2 is fine if we don’t mind leading zeros, e.g. 023.
Pattern 3 is just right for non-neg integers without leading zeros.
Pattern 4 is good for a common way of writing integers within
English text, e.g. 1,024 or 578,000,000,000.

7 / 23

Example

How suitable are the patterns below for specifying the form of
non-negative decimal integers?

1. [0-9]*

2. [0-9]+

3. 0 | [1-9][0-9]*

4. 0 | [1-9][0-9]?[0-9]?(,[0-9][0-9][0-9])*

Answer: Pattern 1 is bad, because it admits the empty string.
Pattern 2 is fine if we don’t mind leading zeros, e.g. 023.
Pattern 3 is just right for non-neg integers without leading zeros.
Pattern 4 is good for a common way of writing integers within
English text, e.g. 1,024 or 578,000,000,000.

7 / 23

How egrep (typically) works

egrep will print all lines containing a match for the given pattern.
How can it do this efficiently?

I Every machine regexp is clearly equivalent to a mathematical
one.

I So we can convert a pattern into a (smallish) NFA.

(More precisely, the number of states of the NFA grows
linearly in the length of the regular expression.)

I We then run the NFA , using the just-in-time simulation
discussed at the end of Lecture 4.

We don’t determinize the NFA to construct the full DFA,
because of the potential exponential state-space blow-up.

grep can be a bit more efficient, exploiting the fact that there’s
‘less non-determinism’ around in the absence of +, ?, |.

8 / 23

Regular expressions in data validation

Regexp’s are used not just in searching, but also in checking
whether data is of the expected form:

I Within XML documents, can enforce constraints on parts of
the data:

<xs:simpleType name="ProductNumberType">

<xs:restriction base="xs:string">

<xs:pattern value="\d{3}-[A-Z]{2}|\d7"/>
</xs:restriction>

</xs:simpleType>

(Example from P. Walmsley, Definitive XML Schema, 2012.)

I For text fields in web forms, check that the input text has the
correct form. (See regexlib.com for hundreds of regexp’s for
validating email addresses, URLs, UK mobile phone numbers,
postcodes, . . .)

9 / 23

Challenge question
Regular expressions and the pattern language have operations that
correspond to the closure of regular languages under union,
concatenation and Kleene star.

However, we have seen other closure properties of regular
languages too: closure under intersection and complement.

Question: Why does the (basic) regex language not include
operations for intersection and complement?

Answer: If we included these, even a smallish regex could lead to a state
space explosion. (Complement especially bad: need to determinize first!)
The design of the regex language protects the unwary user from such
nasty surprises.

WARNING: Some modern versions of so-called ‘regex’ (e.g. in Perl)
include wild constructs that actually go way beyond the power of regular
languages (back-references, backtracking, lookahead, recursive regexes)
. . . and which definitely don’t protect the unwary user from nastiness!

10 / 23

Challenge question
Regular expressions and the pattern language have operations that
correspond to the closure of regular languages under union,
concatenation and Kleene star.

However, we have seen other closure properties of regular
languages too: closure under intersection and complement.

Question: Why does the (basic) regex language not include
operations for intersection and complement?

Answer: If we included these, even a smallish regex could lead to a state
space explosion. (Complement especially bad: need to determinize first!)
The design of the regex language protects the unwary user from such
nasty surprises.

WARNING: Some modern versions of so-called ‘regex’ (e.g. in Perl)
include wild constructs that actually go way beyond the power of regular
languages (back-references, backtracking, lookahead, recursive regexes)
. . . and which definitely don’t protect the unwary user from nastiness!

10 / 23

Challenge question
Regular expressions and the pattern language have operations that
correspond to the closure of regular languages under union,
concatenation and Kleene star.

However, we have seen other closure properties of regular
languages too: closure under intersection and complement.

Question: Why does the (basic) regex language not include
operations for intersection and complement?

Answer: If we included these, even a smallish regex could lead to a state
space explosion. (Complement especially bad: need to determinize first!)
The design of the regex language protects the unwary user from such
nasty surprises.

WARNING: Some modern versions of so-called ‘regex’ (e.g. in Perl)
include wild constructs that actually go way beyond the power of regular
languages (back-references, backtracking, lookahead, recursive regexes)
. . . and which definitely don’t protect the unwary user from nastiness!

10 / 23

Lexical analysis of formal languages

Another application: lexical analysis (a.k.a. lexing).

The problem: Given a source text in some formal language, split it
up into a stream of lexical tokens (or lexemes), each classified
according to its lexical class.

Example: In Java,

while(count2<=1000)count2+=100

would be lexed as

while (count2 <= 1000)

WHILE LBRACK IDENT INFIX-OP INT-LIT RBRACK

count2 += 100

IDENT ASS-OP INT-LIT

11 / 23

Lexing in context

I The output of the lexing phase (a stream of tagged lexemes)
serves as the input for the parsing phase.

For parsing purposes, tokens like 100 and 1000 can be
conveniently lumped together in the class of integer literals.
Wherever 100 can legitimately appear in a Java program, so
can 1000.

Keywords of the language (like while) and other special
symbols (like brackets) typically get a lexical class to
themselves.

I Often, another job of the lexing phase is to throw away
whitespace and comments. (E.g. in Java — but in Python,
spacing matters!)

Rule of thumb: Lexeme boundaries are the places where a
space could harmlessly be inserted.

12 / 23

Syntax highlighting

Lexing doesn’t just happen inside compilers and interpreters.
Many modern editors/IDEs (e.g. Eclipse) do lexing as you type, for
the purpose of syntax highlighting.

13 / 23

Lexical tokens and regular languages

In most computer language (e.g. Java), the allowable forms of
identifiers, integer literals, floating point literals, comments etc. are
simple enough to be described by regular expressions.

This means we can use the technology of finite automata to
produce efficient lexers.

Even better, if you’re designing a language, you don’t actually need
to write a lexer yourself!

Just write some regular expressions that define the various lexical
classes, and let the machine automatically generate the code for
your lexer.

This is the idea behind lexer generators, such as the UNIX-based
lex and the more recent Java-based jflex.

14 / 23

Sample code (from Jflex user guide)

Identifier = [:jletter:] [:jletterdigit:]*

DecIntegerLiteral = 0 | [1−9][0−9]*

LineTerminator = \r|\n|\r\n

InputCharacter = [^\r\n]

EndOfLineComment = "//" {InputCharacter}* {LineTerminator}

{"=="} { return symbol(sym.ASS_OP); }

{EndOfLineComment} { }

... and later on ...

{"while"} { return symbol(sym.WHILE); }

 {DecIntegerLiteral} { return symbol(sym.INT_LIT); }

 {Identifier} { return symbol(sym.IDENT); }

15 / 23

Recognizing a lexical token using NFAs

I Build NFAs for our lexical classes L1, . . . , Lk in the order
listed: N1, . . . ,Nk .

I Run the the ‘parallel’ automaton N1 × · · · ×Nk on some input
string x .

I Choose the smallest i such that we’re in an accepting state of
Ni . Choose class Li as the lexical class for x with highest
priority.

I Perform the specified action for the class Li (typically ‘return
tagged lexeme’, or ignore).

Problem: How do we know when we’ve reached the end of the
current lexical token?

It needn’t be at the first point where we enter an accepting state.
E.g. i, if, if2 and if23 are all valid tokens in Java.

16 / 23

Principle of longest match

In most computer languages, the convention is that each stage, the
longest possible lexical token is selected. This is known as the
principle of longest match (a.k.a. maximal munch).

To find the longest lexical token starting from a given point, we’d
better run N1 × · · · × Nk until it expires, i.e. the set of possible
states becomes empty. (Or max lexeme length is exceeded. . .)

We’d better also keep a note of the last point at which we were in
an accepting state, and what the top priority lexical class was. So
we need to keep track of three positions in the text:

Start of
current
lexeme endpoint

Most recent
lexeme

Current
read position

− fi 2 3 a b=

(Class IDENT)

17 / 23

Lexing: (conclusion)

Once our NFA has expired, we output the string from ‘start’ to
‘most recent end’ as a lexical token of class i .

We then advance the ‘start’ pointer to the character after the
‘most recent end’. . . and repeat until the end of the file is reached.

All this is the basis for an efficient lexing procedure (further
refinements are of course possible).

Hopefully the same lexer will be run on hundreds of source files. So
probably worth taking the time to ‘optimize’ our automaton (e.g.
by converting to a DFA, then minimizing.)

18 / 23

Finite automata and verification

Many concurrent systems arising in practice involve a bunch of
finite-state processes that individually look quite simple.

But when put together, they can interact in very complex and
subtle ways (large state space). Bugs can be hard to detect.

Regular language theory can help us to verify desirable properties
automatically. E.g.

I Safety properties: “bad things don’t happen”

I Liveness properties: “good things do happen”

I Fairness properties: “things good for some processes don’t
cause too much badness to others”

19 / 23

Simple example: Peterson’s mutual exclusion protocol

Suppose we have two concurrent processes P0,P1 that may
request access to some shared resource (e.g. a printer), but
mustn’t be given access at the same time.

P0,P1 can communicate using three shared flags:

I req0 (initially false): ‘whether P0 wants access’.

I req1 (initially false): ‘whether P1 wants access’.

I turn (values 0,1): roughly, ‘who is being allowed a turn’.

Code for P0 when it wants access:

req0 = true ;

turn = 1 ;

while (req1 && turn == 1) { WAIT } ;

... // P0 now has access

req0 = false ;

Code for P1 is same with 0, 1 swapped and req0,req1 swapped.

20 / 23

A finite-state model

We can model P0,P1 and each of the three flags by NFAs
(constructed by hand). E.g.:

idle request

 has
access

wait

wait’

set_req0_true

set_req0_false

set_turn_1

read_req1_

 true

read_turn_1
read_req1_false

read_turn_0

P0:

false true

req0:

read_req0_false read_req0_true

set_req0_false

set_req0_true

set_req0_false set_req0_true

(All states are considered to be accepting.)

21 / 23

Combining the pieces
The ‘language’ for the complete system can now be obtained via a
few standard constructions. (Here ‖ denotes interleaving of regular
languages—not officially defined in Inf2a.)

(L(P0) ‖ L(P1)) ∩ (L(req0) ‖ L(req1) ‖ L(turn))

The corresponding machine M can now be built automatically:
200 states in principle.

What’s more, in a suitable logic, we can formulate properties like:

I Mutual exclusion (a safety property): P0 and P1 can never have
access simultaneously.

I Progress (a liveness property): from any reachable state, some
process can gain access if it tries.

I Bounded waiting (a fairness property): once P0 has requested
access, P1 won’t be given access twice before P0 gets access.

There are algorithms for checking such properties automatically.
22 / 23

Next time . . .

What sorts of things can’t be done using regular languages?

How could we tell that some given language isn’t regular?

We’ll address these questions with a mathematical tool known as
the Pumping Lemma — usually considered one of the hard bits in
Inf2A . . .

23 / 23

	String and Pattern Matching cont'd.
	grep and its friends
	How they work

	Lexing
	What is lexing?
	Lexer generators
	How lexers work

	Verification of concurrent systems

