
Constructions on Finite Automata
Informatics 2A: Lecture 4

Mary Cryan

School of Informatics
University of Edinburgh
mcryan@inf.ed.ac.uk

24 September 2018

1 / 33

mcryan@inf.ed.ac.uk

Determinization
The subset construction

Closure properties of regular languages
Union
Intersection
Complement

DFA minimization
The problem
An algorithm for minimization

2 / 33

Recap of Lecture 3

I A language is a set of strings over an alphabet Σ.

I A language is called regular if it is recognised by some NFA.

I DFAs are an important subclass of NFAs.

I (hinted) An NFA with n states can be determinized to an
equivalent DFA with 2n states, using the subset construction.

I Therefore the regular languages are exactly the languages
recognised by DFAs.

3 / 33

The key insight

I The process we described on Friday for our example (what is
the set of states we can reach after reading the next
character) is a completely deterministic process! Given any
current set of ‘coloured’ states, and any input symbol in Σ,
there’s only one right answer to the question: ‘What will the
new set of coloured states be?’

I What’s more, it’s a finite state process. A ’state’ is simply a
choice of ‘coloured’ states in the original NFA N.
If N has n states, there are 2n such choices.

I This suggests how an NFA with n states can be converted
into a equivalent DFA with 2n states.

4 / 33

The subset construction: example

Our 3-state NFA gives rise to a DFA with 23 = 8 states. The states
of this DFA are subsets of {q0, q1, q2}.

q0

q2

q1

a

a,b

a,b

a

a ⇒

{q0,q1,
 q2}

{q0,q1} {q1,q2} {q0,q2}

{q0} {q1} {q2}

{}

a

b a,b

b

a,b

abb

ab

ba

a

a

The accepting states of this DFA are exactly those that contain an
accepting state of the original NFA.

5 / 33

The subset construction in general

Given an NFA N = (Q,∆, S ,F), we can define an equivalent DFA
M = (Q ′, δ′, s ′,F ′) (over the same alphabet Σ) like this:

I Q ′ is 2Q , the set of all subsets of Q. (Also written P(Q).)

I δ′(A, u) = {q′ ∈ Q | ∃q ∈ A. (q, u, q′) ∈ ∆}. (Set of all states
reachable via u from some state in A.)

I s ′ = S .

I F ′ = {A ⊆ Q | ∃q ∈ A. q ∈ F}.
It’s then not hard to prove mathematically that L(M) = L(N).
(See Kozen for details.)

This process is called determinization.

Coming up in lecture 6: Application of this process to efficient
string searching.

6 / 33

Summary

I We’ve shown that for any NFA N, we can construct a DFA M
with the same associated language.

I Since every DFA is also an NFA, the classes of languages
recognised by DFAs and by NFAs coincide — these are the
regular languages.

I Often a language can be specified more concisely by an NFA
than by a DFA.

I We can automatically convert an NFA to a DFA, at the risk of
an exponential blow-up in the number of states.

I To determine whether a string x is accepted by an NFA we do
not need to construct the entire DFA, but instead we
efficiently simulate the execution of the DFA on x on a
step-by-step basis. (This is called just-in-time simulation.)

7 / 33

Question 1

Let M be the DFA shown on Friday:

0

1 1

0

even odd

Give a simple, concise definition of the strings that are in L(M).

Answer: They are the strings containing an even number of 0’s.

8 / 33

Question 1

Let M be the DFA shown on Friday:

0

1 1

0

even odd

Give a simple, concise definition of the strings that are in L(M).

Answer: They are the strings containing an even number of 0’s.

8 / 33

Question 2

Which of these three languages do you think are regular?

L1 = {a, aa, ab, abbc}
L2 = {axb | x ∈ Σ∗}
L3 = {anbn | n ≥ 0}

If not regular, can you explain why not??

Answers: L1 is regular (easy to see that any finite set of strings is a
regular language). L2 is regular (easy to construct a DFA). L3 is
not regular. We shall see why in lecture 8.

9 / 33

Question 2

Which of these three languages do you think are regular?

L1 = {a, aa, ab, abbc}
L2 = {axb | x ∈ Σ∗}
L3 = {anbn | n ≥ 0}

If not regular, can you explain why not??

Answers: L1 is regular (easy to see that any finite set of strings is a
regular language).

L2 is regular (easy to construct a DFA). L3 is
not regular. We shall see why in lecture 8.

9 / 33

Question 2

Which of these three languages do you think are regular?

L1 = {a, aa, ab, abbc}
L2 = {axb | x ∈ Σ∗}
L3 = {anbn | n ≥ 0}

If not regular, can you explain why not??

Answers: L1 is regular (easy to see that any finite set of strings is a
regular language). L2 is regular (easy to construct a DFA).

L3 is
not regular. We shall see why in lecture 8.

9 / 33

Question 2

Which of these three languages do you think are regular?

L1 = {a, aa, ab, abbc}
L2 = {axb | x ∈ Σ∗}
L3 = {anbn | n ≥ 0}

If not regular, can you explain why not??

Answers: L1 is regular (easy to see that any finite set of strings is a
regular language). L2 is regular (easy to construct a DFA). L3 is
not regular. We shall see why in lecture 8.

9 / 33

Question 3

Consider our first example NFA over {0, 1} (from Friday):

q0 q1 q4 q5q2 q3

0,1

1 0,10,10,10,1 0,1 0,1 0,1

What is the number of states of the smallest DFA that recognises
the same language?

Answer will be given in Lecture 5.

10 / 33

Union of regular languages

Consider the following little theorem:

If L1 and L2 are regular languages over Σ, so is L1 ∪ L2.

This is dead easy to prove using NFAs.

Suppose N1 = (Q1,∆1, S1,F1) is an NFA for L1, and
N2 = (Q2,∆2, S2,F2) is an NFA for L2.

We may assume Q1 ∩ Q2 = ∅ (just relabel states if not).

Now consider the NFA

(Q1 ∪ Q2, ∆1 ∪∆2, S1 ∪ S2, F1 ∪ F2)

This is just N1 and N2 ‘side by side’. Clearly, this NFA recognizes
precisely L1 ∪ L2.

Number of states = |Q1|+ |Q2| — no state explosion!

11 / 33

Intersection of regular languages

If L1 and L2 are regular languages over Σ, so is L1 ∩ L2.

Suppose N1 = (Q1,∆1, S1,F1) is an NFA for L1, and
N2 = (Q2,∆2, S2,F2) is an NFA for L2.

We define a product NFA (Q ′, ∆′, S ′, F ′) by:

Q ′ = Q1 × Q2

(q, r)
a→ (q′, r ′) ∈ ∆′ ⇐⇒ q

a→ q′ ∈ ∆1 and r
a→ r ′ ∈ ∆2

S ′ = S1 × S2

F ′ = F1 × F2

Number of states = |Q1| × |Q2| — a bit more costly than union!

If N1 and N2 are DFAs then the product automaton is a DFA too.

12 / 33

Example of language intersection

13 / 33

Complement of a regular language

(Recall the set-difference operation,

A− B = {x ∈ A | x /∈ B}

where A,B are sets.)

If L is a regular language over Σ, then so is Σ∗ − L.

Suppose N = (Q, δ, s,F) is a DFA for L.

Then (Q, δ, s,Q − F) is a DFA for Σ∗ − L. (We simply swap the
accepting and rejecting states in N.)

Number of states = |Q| — no blow up at all, but we are required
to start with a DFA. This in itself has size implications.

The complement construction does not work if N is not
deterministic!

14 / 33

Closure properties of regular languages

I We’ve seen that if both L1 and L2 are regular languages, then
so are:
I L1 ∪ L2 (union)
I L1 ∩ L2 (intersection)
I Σ∗ − L1 (complement)

I We sometimes express this by saying that regular languages
are closed under the operations of union, intersection and
complementation. (‘Closed’ used here in the sense of
‘self-contained’.)

I Each closure property corresponds to an explicit construction
on finite automata. Sometimes this uses NFAs (union),
sometimes DFAs (complement), and sometimes the
construction works equally well for both NFAs and DFAs
(intersection).

15 / 33

The Minimization Problem

Determinization involves an exponential blow-up in the automaton.
Is it sometimes possible to reduce the size of the resulting DFA?

Many different DFAs can give rise to the same language, e.g.:

0

1 1

0

even odd

0

0

00

11

1 1

0,1

q2

q1 q4

q3

q0

We shall see that there is always a unique smallest DFA for a given
regular language.

16 / 33

DFA minimization

0

0

00

11

1 1

0,1

q2

q1 q4

q3

q0

We perform the following steps to ‘reduce’ M above:

I Throw away unreachable states (in this case, q4).

I Squish together equivalent states, i.e. states q, q′ such that:
every string accepted starting from q is accepted starting from
q′, and vice versa. (In this case, q0 and q2 are equivalent, as
are q1 and q3.)

Let’s write Min(M) for the resulting reduced DFA. In this case,
Min(M) is essentially the two-state machine on the previous slide.

17 / 33

Properties of minimization

The minimization operation on DFAs enjoys the following
properties which characterise the construction:

I L(Min(M)) = L(M).

I If L(M ′) = L(M) and |M ′| ≤ |Min(M)| then M ′ ∼= Min(M).

Here |M| is the number of states of the DFA M, and ∼= means the
two DFAs are isomorphic: that is, identical apart from a possible
renaming of states.

Two consequences of the above are:

I Min(M) ∼= Min(M ′) if and only if L(M) = L(M ′).

I Min(Min(M)) ∼= Min(M).

For a formal treatment of minimization, see Kozen chapters 13–16.

18 / 33

Challenge question

Consider the following DFA over {a, b}.

q1

q3q2

q0

a

b

ab
b

b

a

a

How many states does the minimized DFA have?

19 / 33

Solution

The minimized DFA has just 2 states:

q3q012 b
ba

a

The minimized DFA has been obtained by squishing together
states q0, q1 and q2. Clearly q3 must be kept distinct.

Note that the corresponding language consists of all strings ending
with b.

20 / 33

Minimization in practice

Let’s look again at our definition of equivalent states:

states q, q′ such that: every string accepted starting from
q is accepted starting from q′, and vice versa.

This is fine as an abstract mathematical definition of equivalence,
but it doesn’t seem to give us a way to compute which states are
equivalent: we’d have to ‘check’ infinitely many strings x ∈ Σ∗.

Fortunately, there’s an actual algorithm for DFA minimization that
works in reasonable time.

This is useful in practice: we can specify our DFA in the most
convenient way without worrying about its size, then minimize to a
more ‘compact’ DFA to be implemented e.g. in hardware.

21 / 33

An algorithm for minimization

First eliminate any unreachable states (easy).

Then create a table of all possible pairs of states (p, q), initially
unmarked. (E.g. a two-dimensional array of booleans, initially set
to false.) We mark pairs (p, q) as and when we discover that p and
q cannot be equivalent.

1. Start by marking all pairs (p, q) where p ∈ F and q 6∈ F , or
vice versa.

2. Look for unmarked pairs (p, q) such that for some u ∈ Σ, the
pair (δ(p, u), δ(q, u)) is marked. Then mark (p, q).

3. Repeat step 2 until no such unmarked pairs remain.

If (p, q) is still unmarked, can collapse p, q to a single state.

22 / 33

Illustration of minimization algorithm

Consider the following DFA over {a, b}.

23 / 33

Illustration of minimization algorithm

After eliminating unreachable states:

24 / 33

Illustration of minimization algorithm

We mark states to be kept distinct using a half matrix:

q0
q1 ·
q2 · ·
q3 · · ·

q0 q1 q2 q3

25 / 33

Illustration of minimization algorithm

First mark accepting/non-accepting pairs:

q0
q1 ·
q2 · ·
q3 X X X

q0 q1 q2 q3

26 / 33

Illustration of minimization algorithm

(q0,q1) is unmarked, qo
a→ q1, q1

a→ q3, and (q1,q3) is marked.

q0
q1 ·
q2 · ·
q3 X X X

q0 q1 q2 q3

27 / 33

Illustration of minimization algorithm

So mark (q0,q1).

q0
q1 X
q2 · ·
q3 X X X

q0 q1 q2 q3

28 / 33

Illustration of minimization algorithm

(q0,q2) is unmarked, qo
a→ q1, q2

a→ q3, and (q1,q3) is marked.

q0
q1 X
q2 · ·
q3 X X X

q0 q1 q2 q3

29 / 33

Illustration of minimization algorithm

So mark (q0,q2).

q0
q1 X
q2 X ·
q3 X X X

q0 q1 q2 q3

30 / 33

Illustration of minimization algorithm

The only remaining unmarked pair (q1,q2) stays unmarked.

q0
q1 X
q2 X ·
q3 X X X

q0 q1 q2 q3

31 / 33

Illustration of minimization algorithm

So obtain minimized DFA by collapsing q1, q2 to a single state.

32 / 33

Reading

Relevant reading:

I Subset Construction: Kozen chapter 6

I Closure properties of regular languages: Kozen chapter 4.

I Minimization: Kozen chapters 13–14.

Next time:

I Regular expressions and Kleene’s Theorem.
(Kozen chapters 7, 8.)

33 / 33

	Determinization
	The subset construction

	Closure properties of regular languages
	Union
	Intersection
	Complement

	DFA minimization
	The problem
	An algorithm for minimization

