
Course Roadmap
Informatics 2A: Lecture 2

Mary Cryan, Shay Cohen

School of Informatics
University of Edinburgh
mcryan@inf.ed.ac.uk

scohen@inf.ed.ac.uk

19 September 2018

1 / 24

mcryan@inf.ed.ac.uk
scohen@inf.ed.ac.uk


What Is Inf2a about?
Formal and natural languages
The language processing pipeline
Comparison between FLs and NLs

Course overview
Levels of language complexity
Formal language component
Natural language component

2 / 24



Formal and natural languages

This course is about methods for describing, specifying and
processing languages of various kinds:

I Formal (computer) languages, e.g. Java, Haskell, HTML,
SQL, Postscript, . . .

I Natural (human) languages, e.g. English, Greek, Japanese.

I ‘Languages’ that represent the possible legal behaviours of
some machine or system. E.g. for a vending machine, the
following sequence might be legal:

insert50p . pressButton1 . deliverMarsBar

I ‘Languages’ that represent the legal sequences of moves in a
game, e.g. chess.

3 / 24



A common theoretical core

We’ll be focusing on certain theoretical concepts that can be
applied to each of the above domains:

I regular languages

I finite state machines

I context-free languages, syntax trees

I types, compositional semantics

The fact that the same underlying theory can be applied in such
diverse contexts suggests that the theory is somehow fundamental,
and worth learning about!

Mostly, we’ll be looking at various aspects of formal languages
(mainly MC) and natural languages (mainly SC). As we’ll see,
there are some important similarities between formal and natural
languages — and some important differences.

4 / 24



Syntax trees: a central concept

In both FLs and NLs, phrases have structure that can be
represented via syntax trees.

Com

Var

x2

Assg

=

Expr

- Var

x1

S

NP

Det

The

N

sun

VP

V

shone

Determining the structure of a phrase is an important first step
towards doing other things with it. Much of this course will be
about describing and computing syntax trees for phrases of some
given language.

5 / 24



The language processing ‘pipeline’ (FL version)

Think about the phases in which a Java program is processed:

Raw source text (e.g. x2=-x1)
⇓ lexing

Stream of tokens (e.g. x2, =, -, x1)
⇓ parsing

Syntax tree (as on previous slide)
⇓ typechecking etc.

Annotated syntax tree
⇓ compiling

Java bytecode
⇓ linking

JVM state
⇓ running

Program behaviour

6 / 24



Language processing for programming languages

In the case of programming languages, the pipeline typically works
in a very ‘pure’ way: each phase depends only on the output from
the previous phase.

I In this course, we’ll be concentrating mainly on the first half
of this pipeline: lexing, parsing, typechecking. (Especially
parsing).

I We’ll be looking both at the theoretical concepts involved
(e.g. what is a syntax tree?)

I And at algorithms for the various phases (e.g. how do we
construct the syntax tree for a given program)?

I We won’t say much about techniques for compilation etc.

I However, we’ll briefly touch on how the intended runtime
behaviour of programs (i.e. their semantics) may be specified.

7 / 24



Language processing for natural languages

We’ll look at fundamental parts of the NL processing pipeline. Our
main focus is on how to get computers to perform these tasks, for
applications such as

I machine translation (e.g. Google Translate)

I speech recognition and dialogue systems (e.g. Siri, Google
Voice)

I question answering (e.g. IBM Watson)

I text summarization and simplification

I speech synthesis

But there’ll also be a couple of lectures on scientific studies of how
we as humans perform them.

8 / 24



The language processing ‘pipeline’ (NL version)
A broadly similar pipeline may be considered e.g. for spoken
English:

Raw soundwaves
⇓ phonetics

Phones (e.g. [ph]–pot, [p]–spot)
⇓ phonology

Phonemes (e.g. /p/, /b/)
⇓ segmentation, tagging

Words, morphemes
⇓ parsing

Parse tree
⇓ agreement checking etc.

Annotated parse tree
⇓ semantics

Logical form or ‘meaning’
⇓ · · ·

9 / 24



Comparison between FLs and NLs

There are close relationships between these two pipelines. However,
there are also important differences:

I FLs can be pinned down by a precise definition. NLs are fluid,
fuzzy at the edges, and constantly evolving.

10 / 24



Comparison between FLs and NLs (continued)
There are close relationships between these two pipelines. However,
there are also important differences:

I NLs are riddled with ambiguity at all levels. This is normally
avoidable in FLs.

11 / 24



Comparison between FLs and NLs (continued)

There are close relationships between these two pipelines. However,
there are also important differences:

I For FLs the pipeline is typically ‘pure’. In NLs, information
from later stages is sometimes used to resolve ambiguities at
earlier stages, e.g.

Time flies like an arrow.
Fruit flies like a banana.

12 / 24



Kinds of ambiguity in NL

I Phonological ambiguity: e.g. ‘an ice lolly’ vs. ‘a nice lolly’.

I Lexical ambiguity: e.g. ‘fast’ has many senses (as noun, verb,
adjective, adverb).

I Syntactic ambiguity: e.g. two possible syntax trees for
‘complaints about referees multiplying’.

I Semantic ambiguity: e.g. ‘Please use all available doors when
boarding the train’.

13 / 24



14 / 24



More on the NL pipeline

In the case of natural languages, one could in principle think of the
pipeline . . .

I either as a model for how an artificial speech processing
system might be structured,

I or as a proposed (crude) model for what naturally goes on in
human minds.

In this course, we mostly emphasize the former perspective.

Also, in the NL setting, it’s equally sensible to think of running the
pipeline backwards: starting with a logical form or ‘meaning’ and
generating a speech utterance to express it. But we won’t say
much about this in this course.

15 / 24



Levels of language complexity

Some languages / language features are ‘more complex’ (harder to
describe, harder to process) than others. In fact, we can classify
languages on a scale of complexity (the Chomsky hierarchy):

I Regular languages: those whose phrases can be ‘recognized’
by a finite state machine (cf. Informatics 1).

I Context-free languages. The basic structure of most
programming languages, and many aspects of natural
languages, can be described at this level.

I Context-sensitive languages. Some NLs involve features of this
level of complexity.

I Recursively enumerable languages: all languages that can in
principle be defined via mechanical rules.

Roughly speaking, we’ll start with regular languages and work our
way up the hierarchy. Context-free languages get most attention.

16 / 24



The Chomsky Hierarchy (picture)

Context−sensitive

Context−free

Regular

Recursively enumerable

17 / 24



Formal Language component: overview

Regular languages:

I Definition using finite state machines (as in Inf1A).

I Equivalence of deterministic FSMs, non-deterministic FSMs,
regular expressions.

I Applications: pattern matching, lexing, morphology.

I The pumping lemma: proving a given language isn’t regular.

Context-free languages:

I Context-free grammars, syntax trees.

I The corresponding machines: pushdown automata.

I Parsing: constructing the syntax tree for a given phrase.

I A parsing algorithm for LL(1) languages, in detail.

18 / 24



Formal Language component: overview (continued)

After a break to cover some NL material, we’ll glance briefly at
some concepts from further down the pipeline: e.g. typechecking
and semantics for programming languages.

Then we continue up the Chomsky hierarchy:

Context-sensitive languages:

I Definition, examples.

I Relationship to linear bounded automata.

Recursively enumerable languages:

I Turing machines; theoretical limits of what’s ‘computable in
principle’.

I Undecidable problems.

19 / 24



Natural language component: overview

Some specific topics:

I Complexity of human languages: E.g. whereabouts do human
languages sit in the Chomsky hierarchy?

I Parsing algorithms: Because NLs differ from FLs in various
ways, it turns out that different kinds of parsing algorithms
are suitable.

I Probabilistic versions of FL concepts: In NL, because of
ambiguity, we’re typically looking for the most likely way of
analysing a phrase. For this purpose, probabilistic analogues of
e.g. finite state machines or context-free grammars are useful.

I Use of text corpora: Rather than building in all the relevant
knowledge of the language by hand, we sometimes get a NLP
system to ‘learn’ it for itself from some large sample of
pre-existing text.

20 / 24



Natural language semantics

Consider the sentence:

Every student has access to a computer.

The ‘meaning’ of this can be expressed by a logical formula:

∀x . (student(x) ⇒ ∃y . (computer(y) ∧ hasAccessTo(x , y)))

Or perhaps:

∃y . (computer(y) ∧ ∀x . (student(x) ⇒ hasAccessTo(x , y)))

Problem: how can (either of) these formulae be mechanically
generated from a syntax tree for the original sentence? This is
what semantics is all about.

21 / 24



The Python programming language

I Invented by Guido van Rossum (pictured)

I Object-oriented programming language (like Java):
has classes and objects.

I Dynamic typing (unlike Java). More flexibility but
more chance of run-time errors.

I Clear and powerful syntax – very succinct (unlike
Java). Especially convenient for string processing.

I Typically driven interactively via a console session
(like Haskell).

I Interfaces to many system calls, libraries, window
systems, and other programming languages.

22 / 24



Natural language processing with Python

NLTK: Natural Language Toolkit

Developed by Steven Bird, Ewan Klein and Edward Loper; mainly
addresses education and research; the book is online:
http://www.nltk.org

The NLTK provides support for many parts of the NL processing
pipeline, e.g.

I Part-of-speech tagging

I Parsing

I Meaning extraction (semantics)

Lab sessions will introduce you to both Python and NLTK.

In Assignment 2, we’ll show how one can fit these together to
construct a (very simple) natural language dialogue system.

23 / 24

http://www.nltk.org


Summary

I What is Inf2a about?

I We will learn about formal and natural languages.

I We will discuss their similarities and differences.

I We will cover finite state machines, context-free grammars,
syntax trees, parsing, pos-tagging, ambiguity.

I We will use Python for natural language processing.

I We will have lots of fun!

Next lecture: Finite state machines (revision)
Reading: Kozen chapter 1, 2; J&M[2nd Ed] chapter 1

24 / 24


	What Is Inf2a about?
	Formal and natural languages
	The language processing pipeline
	Comparison between FLs and NLs

	Course overview
	Levels of language complexity
	Formal language component
	Natural language component


