Constructions on Finite Automata
Informatics 2A: Lecture 4

John Longley

School of Informatics
University of Edinburgh
jrl@inf.ed.ac.uk

25 September 2017
1 Closure properties of regular languages
 - Union
 - Intersection
 - Complement

2 DFA minimization
 - The problem
 - An algorithm for minimization
Recap of Lecture 3

- A language is a set of strings over an alphabet Σ.
- A language is called **regular** if it is recognised by some NFA.
- DFAs are an important subclass of NFAs.
- An NFA with n states can be **determinized** to an equivalent DFA with 2^n states, using the **subset construction**.
- Therefore the regular languages are exactly the languages recognised by DFAs.
Consider the following little theorem:

If \(L_1 \) *and* \(L_2 \) *are regular languages over* \(\Sigma \), *so is* \(L_1 \cup L_2 \).

This is *dead easy* to prove using NFAs.

Suppose \(N_1 = (Q_1, \Delta_1, S_1, F_1) \) is an NFA for \(L_1 \), and \(N_2 = (Q_2, \Delta_2, S_2, F_2) \) is an NFA for \(L_2 \).

We may assume \(Q_1 \cap Q_2 = \emptyset \) (just relabel states if not).

Now consider the NFA

\[
(\ Q_1 \cup Q_2, \ \Delta_1 \cup \Delta_2, \ S_1 \cup S_2, \ F_1 \cup F_2 \)
\]

This is just \(N_1 \) and \(N_2 \) ‘side by side’. Clearly, this NFA recognizes precisely \(L_1 \cup L_2 \).

Number of states = \(|Q_1| + |Q_2| \) — no state explosion!
Intersection of regular languages

If \(L_1 \) and \(L_2 \) are regular languages over \(\Sigma \), so is \(L_1 \cap L_2 \).

Suppose \(N_1 = (Q_1, \Delta_1, S_1, F_1) \) is an NFA for \(L_1 \), and \(N_2 = (Q_2, \Delta_2, S_2, F_2) \) is an NFA for \(L_2 \).

We define a product NFA \((Q', \Delta', S', F') \) by:

\[
Q' = Q_1 \times Q_2
\]

\[
(q, r) \xrightarrow{a} (q', r') \in \Delta' \iff q \xrightarrow{a} q' \in \Delta_1 \text{ and } r \xrightarrow{a} r' \in \Delta_2
\]

\[
S' = S_1 \times S_2
\]

\[
F' = F_1 \times F_2
\]

Number of states = \(|Q_1| \times |Q_2| \) — a bit more costly than union!

If \(N_1 \) and \(N_2 \) are DFAs then the product automaton is a DFA too.
Example of language intersection

- DFA for even number of 0's:
 - States: 0, 1
 - Transitions: 0 -> 0, 1 -> 1
 - Accepting state: 0

- DFA for odd number of 1's:
 - States: 0, 1
 - Transitions: 0 -> 0, 1 -> 1
 - Accepting state: 1

The intersection of these two languages is the language of strings that are even in number of 0's and have an odd number of 1's.
Complement of a regular language

(Recall the set-difference operation,

\[A - B = \{ x \in A \mid x \notin B \} \]

where \(A, B \) are sets.)

If \(L \) is a regular language over \(\Sigma \), then so is \(\Sigma^* - L \).

Suppose \(N = (Q, \delta, s, F) \) is a DFA for \(L \).

Then \((Q, \delta, s, Q - F) \) is a DFA for \(\Sigma^* - L \). (We simply swap the accepting and rejecting states in \(N \).)

Number of states = \(|Q| \) — no blow up at all, but we are required to start with a DFA. This in itself has size implications.

The complement construction does not work if \(N \) is not deterministic!
We’ve seen that if both \(L_1 \) and \(L_2 \) are regular languages, then so are:

- \(L_1 \cup L_2 \) (union)
- \(L_1 \cap L_2 \) (intersection)
- \(\Sigma^* - L_1 \) (complement)

We sometimes express this by saying that regular languages are closed under the operations of union, intersection and complementation. (‘Closed’ used here in the sense of ‘self-contained’.)

Each closure property corresponds to an explicit construction on finite automata. Sometimes this uses NFAs (union), sometimes DFAs (complement), and sometimes the construction works equally well for both NFAs and DFAs (intersection).
Determinization involves an exponential blow-up in the automaton. Is it sometimes possible to reduce the size of the resulting DFA? Many different DFAs can give rise to the same language, e.g.:

We shall see that there is always a unique smallest DFA for a given regular language.
We perform the following steps to ‘reduce’ M above:

- Throw away **unreachable** states (in this case, q_4).
- Squish together **equivalent** states, i.e. states q, q' such that:
 every string accepted starting from q is accepted starting from q', and vice versa. (In this case, q_0 and q_2 are equivalent, as are q_1 and q_3.)

Let’s write $\text{Min}(M)$ for the resulting reduced DFA. In this case, $\text{Min}(M)$ is essentially the two-state machine on the previous slide.
Properties of minimization

The minimization operation on DFAs enjoys the following properties which characterise the construction:

- \(\mathcal{L}(\text{Min}(M)) = \mathcal{L}(M) \).
- If \(\mathcal{L}(M') = \mathcal{L}(M) \) and \(|M'| \leq |\text{Min}(M)| \) then \(M' \cong \text{Min}(M) \).

Here \(|M| \) is the number of states of the DFA \(M \), and \(\cong \) means the two DFAs are isomorphic: that is, identical apart from a possible renaming of states.

Two consequences of the above are:

- \(\text{Min}(M) \cong \text{Min}(M') \) if and only if \(\mathcal{L}(M) = \mathcal{L}(M') \).
- \(\text{Min}(\text{Min}(M)) \cong \text{Min}(M) \).

For a formal treatment of minimization, see Kozen chapters 13–16.
Challenge question

Consider the following DFA over \(\{a, b\} \).

![DFA Diagram]

How many states does the minimized DFA have?
The minimized DFA has just 2 states:

![DFA diagram](image)

The minimized DFA has been obtained by squishing together states q0, q1 and q2. Clearly q3 must be kept distinct.

Note that the corresponding language consists of all strings ending with b.
Let’s look again at our definition of equivalent states:

\textit{states }q, q' \textit{ such that: every string accepted starting from } q \textit{ is accepted starting from } q', \textit{ and vice versa.}

This is fine as an abstract \textit{mathematical} definition of equivalence, but it doesn’t seem to give us a way to \textit{compute} which states are equivalent: we’d have to ‘check’ infinitely many strings \(x \in \Sigma^* \).

Fortunately, there’s an actual \textit{algorithm} for DFA minimization that works in reasonable time.

This is useful in practice: we can specify our DFA in the most convenient way without worrying about its size, then minimize to a more ‘compact’ DFA to be implemented e.g. in hardware.
An algorithm for minimization

First eliminate any unreachable states (easy).

Then create a table of all possible pairs of states \((p, q)\), initially unmarked. (E.g. a two-dimensional array of booleans, initially set to false.) We mark pairs \((p, q)\) as and when we discover that \(p\) and \(q\) cannot be equivalent.

1. Start by marking all pairs \((p, q)\) where \(p \in F\) and \(q \not\in F\), or vice versa.
2. Look for unmarked pairs \((p, q)\) such that for some \(u \in \Sigma\), the pair \((\delta(p, u), \delta(q, u))\) is marked. Then mark \((p, q)\).
3. Repeat step 2 until no such unmarked pairs remain.

If \((p, q)\) is still unmarked, can collapse \(p, q\) to a single state.
Consider the following DFA over \(\{a, b\} \).
After eliminating unreachable states:
We mark states to be kept distinct using a half matrix:
Illustration of minimization algorithm

First mark accepting/non-accepting pairs:

<table>
<thead>
<tr>
<th></th>
<th>q0</th>
<th>q1</th>
<th>q2</th>
<th>q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>a,b</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>b</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

q0		✓	✓	✓
q1	✓	✓	✓	✓
q2	✓	✓	✓	✓
q3	✓	✓	✓	✓

Transition: a,b
Illustration of minimization algorithm

(q0,q1) is unmarked, q0 \xrightarrow{a} q1, q1 \xrightarrow{a} q3, and (q1,q3) is marked.
So mark (q0,q1).
(q0,q2) is unmarked, q0 \xrightarrow{a} q1, q2 \xrightarrow{a} q3, and (q1,q3) is marked.
So mark \((q_0,q_2)\).
The only remaining unmarked pair \((q_1, q_2)\) stays unmarked.
So obtain minimized DFA by collapsing q1, q2 to a single state.
Why does this algorithm work?

Let’s say a string \(s \) separates states \(p, q \) if \(s \) takes us from \(p \) to an accepting state and from \(q \) to a rejecting state, or vice versa. Such an \(s \) is a reason for not merging \(p, q \) into a single state. We mark \((p, q)\) when we find that there’s a string separating \(p, q \):

- If \(p \in F \) and \(q \notin F \), or vice versa, then \(\epsilon \) separates \(p, q \).
- Suppose we mark \((p, q)\) because we’ve found a previously marked pair \((p', q')\) where \(p \overset{a}{\rightarrow} p' \) and \(q \overset{a}{\rightarrow} q' \) for some \(a \). If \(s' \) is a separating string for \(p', q' \), then \(as' \) separates \(p, q \).

We stop when there are no more pairs we can mark. If \((p, q)\) remains unmarked, why are \(p, q \) equivalent?

- If \(s = a_1 \ldots a_n \) were a string separating \(p, q \), we’d have

 \[
 p = p_0 \overset{a_1}{\rightarrow} p_1 \overset{a_2}{\rightarrow} \cdots p_{n-1} \overset{a_n}{\rightarrow} p_n ,
 \]

 \[
 q = q_0 \overset{a_1}{\rightarrow} q_1 \overset{a_2}{\rightarrow} \cdots q_{n-1} \overset{a_n}{\rightarrow} q_n
 \]

 with just one of \(p_n, q_n \) accepting. So we’d have marked \((p_n, q_n)\) in Round 0, \((p_{n-1}, q_{n-1})\) by Round 1, \ldots and \((p, q)\) by Round \(n \).
Alternative: Brzozowski’s minimization algorithm

There’s a surprising alternative algorithm for minimizing a DFA $M = (Q, \delta, s, F)$ for a language L. Assume no unreachable states.

- **Reverse** the machine M: flip all the arrows, make F the set of start states, and make s the only accepting state. This gives an NFA N (not typically a DFA) which accepts $L^{rev} = \{ \text{rev}(s) \mid s \in L \}$.

- Apply the subset construction to N, omitting unreachable states, to get a DFA P.
 It turns out that P is *minimal* for L^{rev} (clever)!

- Now apply the same two steps again, starting from P. The result is a minimal DFA for $(L^{rev})^{rev} = L$.
Comparing Brzozowski and marking algorithms

- Both algorithms result in the same minimal DFA for a given DFA M (recall that there's a unique minimal DFA up to isomorphism.)
- In the worst case, Brzozowski’s algorithm can take time $O(2^n)$ for a DFA with n states. The marking algorithm, as presented, runs within time $O(kn^4)$, where $k = |\Sigma|$. (Can be improved further.)
- There are some practical cases where Brzozowski does better.
- Marking algorithm is probably easier to understand, and illustrates a common pattern (more examples later in course).
Improving determinization

Now we have a minimization algorithm, the following improved determinization procedure is possible.

To determinize an NFA M with n states:

1. Perform the subset construction on M to produce an equivalent DFA N with 2^n states.
2. Perform the minimization algorithm on N to produce a DFA $\text{Min}(N)$ with $\leq 2^n$ states.

Using this method we are guaranteed to produce the smallest possible DFA equivalent to M.

In many cases this avoids the exponential state-space blow-up.

In some cases, however, an exponential blow-up is unavoidable.
Consider last lecture’s example NFA over \(\{0, 1\} \):

What is the number of states of the smallest DFA that recognises the same language?

Answer: The smallest DFA has 32 states.

More generally, the smallest DFA for the language:

\[
\{ x \in \Sigma^* | \text{the n-th symbol from the end of } x \text{ is 1} \}
\]

has \(2^n \) states. Whereas, there is an NFA with \(n + 1 \) states.
Consider last lecture’s example NFA over \(\{0, 1\} \):

```
q0 → q1 → q2 → q3 → q4 → q5
```

What is the number of states of the smallest DFA that recognises the same language?

Answer: The smallest DFA has 32 states.
Consider last lecture’s example NFA over \(\{0, 1\} \):

![Diagram of NFA](image)

What is the number of states of the smallest DFA that recognises the same language?

Answer: The smallest DFA has 32 states.

More generally, the smallest DFA for the language:

\[
\{ x \in \Sigma^* \mid \text{the } n\text{-th symbol from the end of } x \text{ is } 1 \}
\]

has \(2^n\) states. Whereas, there is an NFA with \(n + 1\) states.
Relevant reading:
- Closure properties of regular languages: Kozen chapter 4.

Next time:
- Regular expressions and Kleene’s Theorem. (Kozen chapters 7–9.)