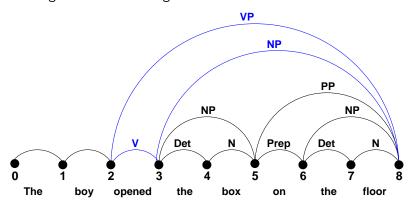
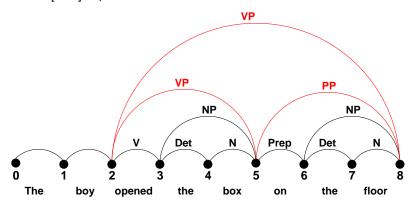
Earley Parsing

Informatics 2A: Lecture 21

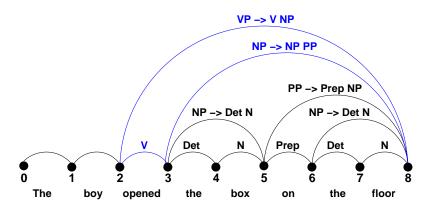

Adam Lopez

4 November 2015

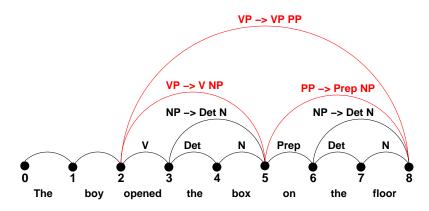
- 1 The CYK chart as a graph
 - What's wrong with CYK
 - Adding Prediction to the Chart
- 2 The Earley Parsing Algorithm
 - The Predictor Operator
 - The SCANNER Operator
 - The COMPLETER Operator
 - Earley parsing: example
 - Comparing Earley and CYK


Graph representation

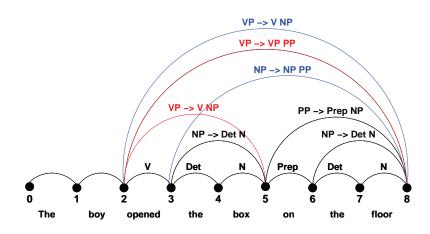
The CYK chart can also be represented as a graph. E.g. for a certain grammar containing rules $VP \rightarrow V$ NP and $VP \rightarrow VP$ PP:


Graph representation

An alternative analysis. Note we don't know which production the VP arc [2, 8] represents: $VP \rightarrow V \ NP$ or $VP \rightarrow VP \ PP$.


CYK Chart entries

If the entire production were recorded, rather than just its LHS (ie, the constituent that it analyses), then we'd (usually) know.



CYK Chart entries

If the entire production were recorded, rather than just its LHS (ie, the constituent that it analyses), then we'd (usually) know.

Chart entries: Both analyses

What's good about CYK

But by remembering more of the structure of each analysis, we increase the size of the chart, without improving its ability to support new inferences.

We don't need to know how $\langle 2, VP, 5 \rangle$ was produced when combining it with $\langle 5, PP, 8 \rangle$ to produce $\langle 2, VP, 8 \rangle$.

By remembering only what we need to make new inferences, we save runtime.

What's wrong with CYK

The CYK algorithm avoids redundant work by storing in a chart all the constituents it finds.

But it populates the table with phantom constituents, that don't form part of any complete parse. Can be a significant problem in long sentences.

The idea of the *Earley algorithm* is to avoid this, by only building constituents that are compatible with the input read so far.

Earley Parsing

Key idea: as well as completed productions (ones whose entire RHS have been recognized), we also record incomplete productions (ones for which there may so far be only partial evidence).

- Incomplete productions (aka incomplete constituents) are effectively predictions about what might come next and what will be learned from finding it.
- Incomplete constituents can be represented using an extended form of production rule called a dotted rule, e.g.
 VP → V • NP.
- The dot indicates how much of the RHS has already been found. The rest is a prediction of what is to come.

Earley Parsing

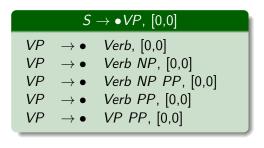
- Allows arbitrary CFGs
- Top-down control
- Fills a table in a single sweep over the input
- Table entries represent:
 - Completed constituents and their locations
 - In-progress constituents
 - Predicted constituents

States

The table entries are called states and are represented with dotted-rules.

$$S \rightarrow \bullet \ VP \ [0,0]$$
 A VP is predicted at the start of the sentence $NP \rightarrow Det \bullet Nominal \ [1,2]$ An NP is in progress; seen Det , $Nominal$ is expected $VP \rightarrow V \ NP \ \bullet [0,3]$ A VP has been found starting at 0 and ending at 3

Once chart is populated there should be an S the final column that spans from 0 to N and is complete: $S \to \alpha \bullet [0, N]$. If that's the case you're done.


Sketch of Earley Algorithm

- Predict all the states you can upfront, working top-down from S
- 2 For each word in the input:
 - Scan in the word.
 - Complete or extend existing states based on matches.
 - 3 Add new predictions.
- When out of words, look at the chart to see if you have a winner.

The algorithm uses three basic operations to process states in the chart: PREDICTOR and COMPLETER add states to the chart entry being processed; SCANNER adds a state to the next chart entry.

PREDICTOR

- Creates new states representing top-down expectations
- Applied to any state that has a non-terminal (other than a part-of-speech category) immediately to right of dot
- Application results in creation of one new state for each alternative expansion of that non-terminal
- New states placed into same chart entry as generating state

SCANNER

- Applies to states with a part-of-speech category to right of dot
- Incorporates into chart a state corresponding to prediction of a word with particular part-of-speech
- Creates new state from input state with dot advanced over predicted input category
- Unlike CYK, only parts-of-speech of a word that are predicted by some existing state will enter the chart (top-down input)

COMPLETER

- Applied to state when its dot has reached right end of the rule
- This means that parser has successfully discovered a particular grammatical category over some span of the input
- COMPLETER finds and advances all previously created states that were looking for this category at this position in input
- Creates states copying the older state, advancing dot over expected category, and installing new state in chart

```
NP 	o Det\ Nominal ullet, [1,3] finds state VP 	o Verb ullet NP, [0,1] finds state VP 	o Verb ullet NP\ PP, [0,1]
```

COMPLETER

- Applied to state when its dot has reached right end of the rule
- This means that parser has successfully discovered a particular grammatical category over some span of the input
- COMPLETER finds and advances all previously created states that were looking for this category at this position in input
- Creates states copying the older state, advancing dot over expected category, and installing new state in chart

```
NP 	o Det\ Nominal ullet, [1,3] finds state VP 	o Verb ullet NP, [0,1] finds state VP 	o Verb ullet NP\ PP, [0,1] adds complete state VP 	o Verb\ NP ullet, [0,3] adds incomplete state VP 	o Verb\ NP ullet PP, [0,3]
```

We will use the grammar to parse the sentence "Book that flight".

Grammar Rules		
$S \rightarrow NP \ VP$	$\mathit{VP} ightarrow \mathit{Verb}$	
$S o Aux \ NP \ VP$	$VP o Verb \ NP$	
S o VP	$VP o Verb \ NP \ PP$	
NP o Pronoun	$VP o Verb \ PP$	
NP o Proper-Noun	VP o VP PP	
NP o Det Nominal	PP o Preposition NP	
Nominal o Noun	Verb ightarrow book include prefer	
Nominal $ o$ Nominal Noun	Noun o book flight meal	
Nominal $ o$ Nominal PP	Det ightarrow that this these	

state	rule	start/end	reason
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet Aux NP VP$	[0,0]	Predictor
S3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	$NP \rightarrow \bullet Pronoun$	[0,0]	Predictor
S5	NP ightarrow ullet Proper-Noun	[0,0]	Predictor
S6	NP ightarrow ullet Det Nominal	[0,0]	Predictor
S7	VP ightarrow ullet Verb	[0,0]	Predictor
S8	VP ightarrow ullet Verb NP	[0,0]	Predictor
S9	$VP \rightarrow \bullet Verb NP PP$	[0,0]	Predictor
S10	$VP \rightarrow \bullet Verb PP$	[0,0]	Predictor
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor

state	rule	start/end	reason
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet Aux NP VP$	[0,0]	Predictor
S3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	NP ightarrow ullet Pronoun	[0,0]	Predictor
S5	NP ightarrow ullet Proper-Noun	[0,0]	Predictor
S6	NP ightarrow ullet Det Nominal	[0,0]	Predictor
S7	VP ightarrow ullet Verb	[0,0]	Predictor
S8	VP ightarrow ullet Verb NP	[0,0]	Predictor
S9	$VP \rightarrow \bullet Verb NP PP$	[0,0]	Predictor
S10	$VP \rightarrow \bullet Verb PP$	[0,0]	Predictor
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor

state	rule	start/end	reason
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet Aux NP VP$	[0,0]	Predictor
S3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	NP ightarrow lacktriangle Pronoun	[0,0]	Predictor
S5	NP ightarrow ullet Proper-Noun	[0,0]	Predictor
S6	NP ightarrow ullet Det Nominal	[0,0]	Predictor
S7	VP ightarrow ullet Verb	[0,0]	Predictor
S8	VP ightarrow ullet Verb NP	[0,0]	Predictor
S9	$VP \rightarrow \bullet Verb NP PP$	[0,0]	Predictor
S10	$VP \rightarrow \bullet Verb PP$	[0,0]	Predictor
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor

state	rule	start/end	reason
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet Aux NP VP$	[0,0]	Predictor
S3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	NP ightarrow lacktriangleq Pronoun	[0,0]	Predictor
S5	$NP \rightarrow \bullet Proper-Noun$	[0,0]	Predictor
S6	NP ightarrow ullet Det Nominal	[0,0]	Predictor
S7	VP ightarrow ullet Verb	[0,0]	Predictor
S8	$VP \rightarrow \bullet Verb NP$	[0,0]	Predictor
S9	$VP \rightarrow \bullet Verb NP PP$	[0,0]	Predictor
S10	$VP \rightarrow \bullet Verb PP$	[0,0]	Predictor
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor

state	rule	start/end	reason
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet Aux NP VP$	[0,0]	Predictor
S3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	NP ightarrow ullet Pronoun	[0,0]	Predictor
S5	$NP \rightarrow \bullet Proper-Noun$	[0,0]	Predictor
S6	NP ightarrow ullet Det Nominal	[0,0]	Predictor
S7	VP ightarrow ullet Verb	[0,0]	Predictor
S8	$VP \rightarrow \bullet Verb NP$	[0,0]	Predictor
S9	$VP \rightarrow \bullet Verb NP PP$	[0,0]	Predictor
S10	$VP \rightarrow \bullet Verb PP$	[0,0]	Predictor
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor

state	rule	start/end	reason
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet Aux NP VP$	[0,0]	Predictor
S3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	NP ightarrow lacktriangle Pronoun	[0,0]	Predictor
S5	NP ightarrow ullet Proper-Noun	[0,0]	Predictor
S6	NP ightarrow ullet Det Nominal	[0,0]	Predictor
S7	$VP \rightarrow \bullet Verb$	[0,0]	Predictor
S8	$VP \rightarrow \bullet Verb NP$	[0,0]	Predictor
S9	$VP \rightarrow \bullet Verb NP PP$	[0,0]	Predictor
S10	$VP \rightarrow \bullet Verb PP$	[0,0]	Predictor
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor

state	rule	start/end	reason
S12	Verb ightarrow book ullet	[0,1]	Scanner
S13	$\mathit{VP} ightarrow \mathit{Verb} ullet$	[0,1]	Completer
S14	VP ightarrow Verb ullet NP	[0,1]	Completer
S15	VP o Verb ullet NP PP	[0,1]	Completer
S16	VP o Verb ullet PP	[0,1]	Completer
S17	S o VP ullet	[0,1]	Completer
S18	VP o VP ullet PP	[0,1]	Completer
S19	NP ightarrow ullet Pronoun	[1,1]	Predictor
S20	NP ightarrow ullet Proper-Noun	[1,1]	Predictor
S21	NP ightarrow ullet Det Nominal	[1,1]	Predictor
S22	PP → • Prep NP	[1,1]	Predictor

state	rule	start/end	reason
S12	Verb ightarrow book ullet	[0,1]	Scanner
S13	$\mathit{VP} ightarrow \mathit{Verb} ullet$	[0,1]	Completer
S14	VP o Verb ullet NP	[0,1]	Completer
S15	VP o Verb ullet NP PP	[0,1]	Completer
S16	VP o Verb ullet PP	[0,1]	Completer
S17	S o VP ullet	[0,1]	Completer
S18	VP o VP ullet PP	[0,1]	Completer
S19	NP ightarrow ullet Pronoun	[1,1]	Predictor
S20	NP ightarrow ullet Proper-Noun	[1,1]	Predictor
S21	NP ightarrow ullet Det Nominal	[1,1]	Predictor
S22	PP → • Prep NP	[1,1]	Predictor

state	rule	start/end	reason
S12	Verb ightarrow book ullet	[0,1]	Scanner
S13	$\mathit{VP} ightarrow \mathit{Verb} ullet$	[0,1]	Completer
S14	VP o Verb ullet NP	[0,1]	Completer
S15	VP o Verb ullet NP PP	[0,1]	Completer
S16	VP o Verb ullet PP	[0,1]	Completer
S17	S o VP ullet	[0,1]	Completer
S18	VP o VP ullet PP	[0,1]	Completer
S19	NP ightarrow ullet Pronoun	[1,1]	Predictor
S20	NP ightarrow ullet Proper-Noun	[1,1]	Predictor
S21	NP ightarrow ullet Det Nominal	[1,1]	Predictor
S22	PP → • Prep NP	[1,1]	Predictor

state	rule	start/end	reason
S12	Verb ightarrow book ullet	[0,1]	Scanner
S13	$\mathit{VP} ightarrow \mathit{Verb} ullet$	[0,1]	Completer
S14	VP o Verb ullet NP	[0,1]	Completer
S15	VP o Verb ullet NP PP	[0,1]	Completer
S16	VP o Verb ullet PP	[0,1]	Completer
S17	S o VP ullet	[0,1]	Completer
S18	VP o VP ullet PP	[0,1]	Completer
S19	NP ightarrow ullet Pronoun	[1,1]	Predictor
S20	NP ightarrow ullet Proper-Noun	[1,1]	Predictor
S21	NP ightarrow ullet Det Nominal	[1,1]	Predictor
S22	PP → • Prep NP	[1,1]	Predictor

state	rule	start/end	reason
S12	Verb ightarrow book ullet	[0,1]	Scanner
S13	$\mathit{VP} ightarrow \mathit{Verb} ullet$	[0,1]	Completer
S14	VP o Verb ullet NP	[0,1]	Completer
S15	VP o Verb ullet NP PP	[0,1]	Completer
S16	VP o Verb ullet PP	[0,1]	Completer
S17	$S \rightarrow VP \bullet$	[0,1]	Completer
S18	VP o VP ullet PP	[0,1]	Completer
S19	NP ightarrow ullet Pronoun	[1,1]	Predictor
S20	NP ightarrow ullet Proper-Noun	[1,1]	Predictor
S21	NP ightarrow ullet Det Nominal	[1,1]	Predictor
S22	PP → • Prep NP	[1,1]	Predictor

state	rule	start/end	reason
S12	Verb ightarrow book ullet	[0,1]	Scanner
S13	$\mathit{VP} ightarrow \mathit{Verb} ullet$	[0,1]	Completer
S14	VP o Verb ullet NP	[0,1]	Completer
S15	VP o Verb ullet NP PP	[0,1]	Completer
S16	VP ightarrow Verb ullet PP	[0,1]	Completer
S17	S o VP ullet	[0,1]	Completer
S18	VP o VP ullet PP	[0,1]	Completer
S19	NP o ullet Pronoun	[1,1]	Predictor
S20	NP ightarrow ullet Proper-Noun	[1,1]	Predictor
S21	NP ightarrow ullet Det Nominal	[1,1]	Predictor
S22	PP → • Prep NP	[1,1]	Predictor

state	rule	start/end	reason
S12	Verb ightarrow book ullet	[0,1]	Scanner
S13	$\mathit{VP} ightarrow \mathit{Verb} ullet$	[0,1]	Completer
S14	VP ightarrow Verb ullet NP	[0,1]	Completer
S15	VP o Verb ullet NP PP	[0,1]	Completer
S16	VP ightarrow Verb ullet PP	[0,1]	Completer
S17	S o VP ullet	[0,1]	Completer
S18	VP o VP ullet PP	[0,1]	Completer
S19	NP ightarrow ullet Pronoun	[1,1]	Predictor
S20	NP ightarrow ullet Proper-Noun	[1,1]	Predictor
S21	NP ightarrow ullet Det Nominal	[1,1]	Predictor
S22	PP → • Prep NP	[1,1]	Predictor

state	rule	start/end	reason
S12	Verb ightarrow book ullet	[0,1]	Scanner
S13	$\mathit{VP} ightarrow \mathit{Verb} ullet$	[0,1]	Completer
S14	VP ightarrow Verb ullet NP	[0,1]	Completer
S15	VP o Verb ullet NP PP	[0,1]	Completer
S16	VP ightarrow Verb ullet PP	[0,1]	Completer
S17	S o VP ullet	[0,1]	Completer
S18	VP o VP ullet PP	[0,1]	Completer
S19	NP ightarrow ullet Pronoun	[1,1]	Predictor
S20	NP ightarrow ullet Proper-Noun	[1,1]	Predictor
S21	NP ightarrow ullet Det Nominal	[1,1]	Predictor
S22	PP → • Prep NP	[1,1]	Predictor

state	rule	start/end	reason
S23	Det $ o$ that $ullet$	[1,2]	Scanner
S24	NP ightarrow Det ullet Nominal	[1,2]	Completer
S25	Nominal $ ightarrow ullet$ Noun	[2,2]	Predictor
S26	Nominal $ o ullet$ Nominal Noun	[2,2]	Predictor
S27	Nominal $ o ullet$ Nominal PP	[2,2]	Predictor

state	rule	start/end	reason
S23	Det $ o$ that $ullet$	[1,2]	Scanner
S24	NP o Det ullet Nominal	[1,2]	Completer
S25	Nominal $ o ullet$ Noun	[2,2]	Predictor
S26	Nominal $ o ullet$ Nominal Noun	[2,2]	Predictor
S27	Nominal $ o ullet$ Nominal PP	[2,2]	Predictor

state	rule	start/end	reason
S23	$ extit{Det} ightarrow extit{that} ullet$	[1,2]	Scanner
S24	NP ightarrow Det ullet Nominal	[1,2]	Completer
S25	Nominal $ ightarrow ullet$ Noun	[2,2]	Predictor
S26	Nominal $ o ullet$ Nominal Noun	[2,2]	Predictor
S27	Nominal $ ightarrow ullet$ Nominal PP	[2,2]	Predictor

state	rule	start/end	reason
S23	Det $ o$ that $ullet$	[1,2]	Scanner
S24	NP o Det ullet Nominal	[1,2]	Completer
S25	Nominal $ ightarrow ullet$ Noun	[2,2]	Predictor
S26	Nominal $ o ullet$ Nominal Noun	[2,2]	Predictor
S27	Nominal $ o ullet$ Nominal PP	[2,2]	Predictor

state	rule	start/end	reason
S28	Noun → flight •	[2,3]	Scanner
S29	Nominal → Noun •	[2,3]	Completer
S30	NP ightarrow Det Nominal ullet	[1,3]	Completer
S31	Nominal o Nominal ullet Noun	[2,3]	Completer
S32	Nominal o Nominal ullet PP	[2,3]	Completer
S33	VP ightarrow Verb NP ullet	[0,3]	Completer
S34	VP ightarrow Verb NP ullet PP	[0,3]	Completer
S35	PP o Prep ullet NP	[3,3]	Predictor
S36	$S \rightarrow VP \bullet$	[0,3]	Completer
S37	$VP \rightarrow VP \bullet PP$	[0,3]	Completer

state	rule	start/end	reason
S28	Noun $ o$ flight $ullet$	[2,3]	Scanner
S29	Nominal $ o$ Noun $ullet$	[2,3]	Completer
S30	$\mathit{NP} ightarrow \mathit{Det} \ \mathit{Nominal} \ ullet$	[1,3]	Completer
S31	Nominal $ o$ Nominal $ullet$ Noun	[2,3]	Completer
S32	Nominal $ o$ Nominal $ullet$ PP	[2,3]	Completer
S33	$\mathit{VP} ightarrow \mathit{Verb} \; \mathit{NP} \; ullet$	[0,3]	Completer
S34	$\mathit{VP} ightarrow \mathit{Verb} \ \mathit{NP} ullet \ \mathit{PP}$	[0,3]	Completer
S35	PP o Prep ullet NP	[3,3]	Predictor
S36	S o VP ullet	[0,3]	Completer
S37	$VP \rightarrow VP \bullet PP$	[0,3]	Completer

state	rule	start/end	reason
S28	Noun → flight •	[2,3]	Scanner
S29	Nominal $ o$ Noun $ullet$	[2,3]	Completer
S30	NP ightarrow Det Nominal ullet	[1,3]	Completer
S31	Nominal o Nominal ullet Noun	[2,3]	Completer
S32	Nominal $ o$ Nominal $ullet$ PP	[2,3]	Completer
S33	VP ightarrow Verb NP ullet	[0,3]	Completer
S34	VP ightarrow Verb NP ullet PP	[0,3]	Completer
S35	PP ightarrow Prep ullet NP	[3,3]	Predictor
S36	$S \rightarrow VP \bullet$	[0,3]	Completer
S37	$VP \rightarrow VP \bullet PP$	[0,3]	Completer

state	rule	start/end	reason
S28	Noun → flight •	[2,3]	Scanner
S29	Nominal → Noun •	[2,3]	Completer
S30	$\mathit{NP} ightarrow \mathit{Det} \ \mathit{Nominal} \ ullet$	[1,3]	Completer
S31	Nominal o Nominal ullet Noun	[2,3]	Completer
S32	Nominal $ o$ Nominal $ullet$ PP	[2,3]	Completer
S33	$\mathit{VP} ightarrow \mathit{Verb} \ \mathit{NP} ullet$	[0,3]	Completer
S34	VP ightarrow Verb NP ullet PP	[0,3]	Completer
S35	PP o Prep ullet NP	[3,3]	Predictor
S36	S o VP ullet	[0,3]	Completer
S37	$VP \rightarrow VP \bullet PP$	[0,3]	Completer

The Earley Algorithm

```
function EARLEY-PARSE(words, grammar) returns chart
 ENQUEUE((\gamma \rightarrow \bullet S, [0,0]), chart[0])
 for i \leftarrow from 0 to LENGTH(words) do
  for each state in chart[i] do
    if INCOMPLETE?(state) and
             NEXT-CAT(state) is not a part of speech then
        Predictor(state)
     elseif INCOMPLETE?(state) and
             NEXT-CAT(state) is a part of speech then
        SCANNER(state)
     else
        COMPLETER(state)
  end
 end
 return(chart)
```

The Earley Algorithm

```
procedure PREDICTOR((A \rightarrow \alpha \bullet B \beta, [i, j]))
   for each (B \rightarrow \gamma) in GRAMMAR-RULES-FOR(B, grammar) do
         ENQUEUE((B \rightarrow \bullet \gamma, [j, j]), chart[j])
   end
procedure SCANNER((A \rightarrow \alpha \bullet B \beta, [i, j]))
   if B \subset PARTS-OF-SPEECH(word[i]) then
        ENQUEUE((B \rightarrow word[j], [j, j+1]), chart[j+1])
procedure COMPLETER((B \rightarrow \gamma \bullet, [j,k]))
   for each (A \rightarrow \alpha \bullet B \beta, [i, j]) in chart [j] do
         ENQUEUE((A \rightarrow \alpha B \bullet \beta, [i,k]), chart[k])
   end
```

Parsing the Input

As with CYK we have formulated a recognizer. We can change it to a parser by adding backpointers so that each state knows where it came from.

Chart[1]	S12	Verb ightarrow book ullet	[0,1]	Scanner
Chart[2]	S23	Det $ o$ that $ullet$	[1,2]	Scanner
Chart[3]	S28	Noun $ o$ flight $ullet$	[2,3]	Scanner
	S29	Nominal $ o$ Noun $ullet$	[2,3]	(S28)
	S30	NP o Det Nominal ullet	[1,3]	(S23, S29)
	S33	$\mathit{VP} ightarrow \mathit{Verb} \ \mathit{NP} \ ullet$	[0,3]	(S12, S30)
	S36	S o VP ullet	[0,3]	(S33)

Comparing Earley and CYK

- For such a simple example, there seems to be a lot of useless stuff in the chart.
- We are predicting phrases that aren't there at all!
- That's the flipside to the CYK problem.

Comparing Earley and CYK

- For such a simple example, there seems to be a lot of useless stuff in the chart.
- We are predicting phrases that aren't there at all!
- That's the flipside to the CYK problem.

Did we solve ambiguity?

Comparing Earley and CYK

- For such a simple example, there seems to be a lot of useless stuff in the chart.
- We are predicting phrases that aren't there at all!
- That's the flipside to the CYK problem.

Did we solve ambiguity? Both CYK and Earley may result in multiple S structures for the [0, N] table entry. Of course, neither can tell us which one is 'right'.

The Asymptotic Complexity of Earley and CKY

- Both algorithms are cubic in *n* (length of string)
- CKY needs to construct $O(n^2)$ elements in the chart (in the worst-case), and processing each element to create it is O(n), so it is $O(n^3)$ in total
- Earley also needs to construct $O(n^2)$ elements, and the COMPLETER operation takes O(n) time. It could potentially run on $O(n^2)$ elements, so the complexity is again $O(n^3)$

More about Asymptotic Complexity of Earley

- The Complete operation really takes $O(i^2)$ at iteration i
- For unambiguous grammars, Earley shows that the COMPLETER operation can take at most O(i) time
- This means that the complexity for unambiguous grammars is $O(n^2)$
- There are also some specialised grammars for which the Earley algorithm takes O(n) time

Connection between the Earley Algorithm and CKY

What happens if we run the Earley algorithm on a grammar in Chomsky normal form?

- This is essentially CKY with top-down filtering
- It will only create (completed) elements in the chart, if there is a left-most derivation that leads to that constituent

Summary

- The Earley algorithm uses dynamic programming to implement a top-down search strategy.
- Single left to right pass that fills chart with entries.
- Dotted rule represents progress in recognizing RHS of rule.
- Algorithm always moves forward, never backtracks to previous chart entry, once it has moved on.
- States are processed using PREDICTOR, COMPLETER, SCANNER operations.

Reading: Same as for Lecture 17

Next lecture: Resolving ambiguity using statistical parsing.