
The CYK Algorithm
Informatics 2A: Lecture 20

Adam Lopez

3 November 2016

1 / 32

1 Problems with Parsing as Search
The need for ambiguity
The computational cost of ambiguity

2 The CYK Algorithm
Parsing as intersection
Parsing as Dynamic Programming
The CYK Algorithm
Properties of the Algorithm

2 / 32

Problems with parsers we’ve learned so far

Deterministic parsing can address grammars with limited
ambiguity. For example, LL(1) parsing can handle grammars with
no ambiguity.

By re-structuring the grammar, the parser can make a unique
decision, based on a limited amount of look-ahead.

Recursive Descent parsing also demands grammar restructuring, in
order to eliminate left-recursive rules that can get it into a hopeless
loop.

Can we avoid recursion and/ or ambiguity?

3 / 32

Left Recursion

But grammars for natural human languages should be revealing,
re-structuring the grammar may destroy this. (Indirectly)
left-recursive rules are needed in English.

NP → DET N
NP → NPR
DET → NP ’s

These rules generate NPs with possessive modifiers such as:

John’s sister
John’s mother’s sister
John’s mother’s uncle’s sister
John’s mother’s uncle’s sister’s niece

4 / 32

Left Recursion

NP

NDET

NP

John

NPR

’s

mother

NP

sister

NDET

NP

NDET

uncle ’s

’s

NP

John

NPR

’s

DET

NP

sister

NDET

NP

’smother

N

NP

DET

NP

John

NPR

’s sister

N

We don’t want to re-structure our grammar rules just to be able to
use a particular approach to parsing. Need an alternative.

5 / 32

How necessary is ambiguity?

6 / 32

How necessary is ambiguity?

Can grammars be inherently ambiguous?

Suppose we have two languages:
L1 = {anbncm|n,m ≥ 0}
L2 = {ambncn|n,m ≥ 0}

Both L1 and L2 are context-free. (Why?)
The language L1 ∪ L2 is also context-free (Why?)

In the obvious construction, all strings in the sublanguage anbncn

have two parses in L1 ∪ L2.

It is not possible to create an equivalent grammar with only a
single parse for these strings! The proof is very technical, but more
approachable with an adaptation of the context-free pumping
lemma (week 10).

7 / 32

How many parses are there?

If our grammar is ambiguous (inherently, or by design) then how
many possible parses are there?

In general: an infinite number, if we allow unary recursion.

More specific: suppose that we have a grammar in Chomsky
normal form. How many possible parses are there for a sentence of
n words? Imagine that every nonterminal can rewrite as every pair
of nonterminals (A→BC) and every nonterminal (A→a)

1 n

2 n2

3 n log n

4
(2n)!

(n+1)!n!

8 / 32

How many parses are there?

A

aa

A

A

aa

A

a

A

A

a

A

aa

A

A

A

aa

A

aa

A

A

A

aa

A

aa

A

A

A

a

A

aaa

A

a

A

A

a

A

aa

A

A

aa

A

aa

9 / 32

How many parses are there?

Intution. Let C (n) be the number of binary trees over a sentence
of length n. The root of this tree has two subtrees: one over k
words (1 ≤ k < n), and one over n− k words. Hence, for all values
of k, we can combine any subtree over k words with any subtree
over n − k words:

C (n) =
n−1∑
k=1

C (k)× C (n − k)

Do several pages of math.

C (n) =
(2n)!

(n + 1)!n!

These numbers are called the Catalan numbers. They’re big
numbers!

n 1 2 3 4 5 6 8 9 10 11 12
C (n) 1 1 2 5 14 42 132 429 1430 4862 16796

10 / 32

Problems with Parsing as Search

1 A recursive descent parser (top-down) will do badly if there
are many different rules for the same LHS. Hopeless for
rewriting parts of speech (preterminals) with words
(terminals).

2 A shift-reduce parser (bottom-up) does a lot of useless
work: many phrase structures will be locally possible, but
globally impossible. Also inefficient when there is much lexical
ambiguity.

3 Both strategies do repeated work by re-analyzing the same
substring many times.

We will see how chart parsing solves the re-parsing problem, and
also copes well with ambiguity.

11 / 32

Parsing as intersection

Recall: When we worked with FSTs, we could analyse a string by
first converting that string to an FSA, and then composing that
FSA with the FST that implemented the analyser. Equivalently, we
intersect the FSA with the input tape of the FST.

Question. What is the intersection of a regular language and a
context-free language?

A regular language

A context-free language

Something else

Claim. The intersection of any regular language and any
context-free language is context-free.

Since any CFL can be represented by a CFG and any RL can be
represented by a FSA, we will work with languages in those
representations. (It’s possible to demonstrate this claim using other
representations.)

12 / 32

Preliminaries

Recall that every grammar can be converted to Chomsky normal
form, in which all rules are of the form A→BC or A→w. Suppose
that we have a grammar G = (N,T ,P,S) of this form, where:

N is a set of nonterminals

T is a set of terminals

P is a set of productions

S ∈ N is a start symbol

We also have an ε-free FSA M = (Q,T , δ, q0,F) where:

Q is a set of states

T is an alphabet (note: same as T above)

δ ∈ Q × T × Q is a set of transitions

q0 ∈ Q is a start state

F is a set of final states

13 / 32

Proof Sketch of Claim

We construct a new grammar G ′. Its nonterminals are the set
Q × N × Q ∪ {S ′}.

Example. If A is a nonterminal in G , and q, r are states of M,
then 〈q,A, r〉 is a nonterminal in G ′.

Add to G ′ a production S ′ → 〈q0,S , r〉 for every r ∈ F .

Intution. We will construct G ′ so that nonterminal 〈q,A, r〉
derives string w if and only if:

1 A derives w .

2 w is the label of some path from q to r in M.

If we can do this, then we will have that L(G ′) = L(G) ∩ L(M),
since S ′ will derive w if and only if:

1 S derives w .

2 w is the label of a path from q0 to some state in F .

14 / 32

Proof Sketch of Claim

Step 1. For every production A→ w in P, and every transition
q →w r in δ, add the production 〈q,A, r〉 → w to G ′.

By construction, our intuition now holds for any string of length 1.

Step 2. For every production A→ BC in P, and every trio of
states q, r , and s in Q, add the production
〈q,A, r〉 → 〈q,B, s〉〈s,C , r〉 to G ′.

Assume our intuition holds for any string of length n or smaller. By
induction on the form of the rules above, it must also hold on all
strings of length n + 1.

15 / 32

Parsing as Intersection

We now have a sketch of an algorithm to parse a sentence with
any grammar in CNF:

1 Convert the sentence to a FSA. Recall that if there are n
words, then the number of states in this FSA is n + 1.

2 Compute the Bar-Hillel construction of the above proof.

3 Check to see if the intersected language is empty. (How?)

What is the runtime of this algorithm?

1 O(n)

2 O(n2)

3 O(n3)

4 O(2n)

5 C (n) (the nth Catalan number)

16 / 32

Can we do better?

The algorithm sketched above is inefficient: it computes all
possible rules and nonterminals of G ′, even if they are not used in
any parse of the input sentence.

We could do better if we only add rules to the grammar that derive
some part of the input.

Fortunately, the algorithm implies (in its inductive step) a way to
do this: only add 〈q,A, r〉 to the grammar if we have already
determined that 〈q,B, s〉 and 〈s,C , r〉 derive some string of the
grammar, for any rule A→ BC and choice of s.

Does this remind you of anything? (It’s the same recursion we saw
in the Catalan numbers)

Since the base case is at the word level, we can think of this as a
bottom-up filter on the construction.

17 / 32

CKY as dynamic programming

We have a Boolean table called Chart, such that Chart[A, i , j] is
true if there is a sub-phrase according the grammar that dominates
words i through words j

Build this chart recursively, similarly to the Viterbi algorithm:

Seed the chart:
Chart[A, i , i + 1] = True if there exists a rule A→ wi+1 where
wi+1 is the (i + 1)th word in the string

For j > i + 1:

Chart[A, i , j] =

j−1∨
k=i+1

∨
A→B C

Chart[B, i , k] ∧ Chart[C , k, j]

18 / 32

Depicting a Chart

A chart can be depicted as a matrix:

Rows and columns of the matrix correspond to the start and
end positions of a span (ie, starting right before the first word,
ending right after the final one);

A cell in the matrix corresponds to the sub-string that starts
at the row index and ends at the column index.

It can contain information about the type of constituent (or
constituents) that span(s) the substring, pointers to its
sub-constituents, and/or predictions about what constituents
might follow the substring.

19 / 32

CYK Algorithm

The algorithm we have worked out is called the CKY (Cocke,
Younger, Kasami) algorithm. It answers the question: given
grammar G and string w , is w ∈ L(G)?

Assumes that the grammar is in Chomsky Normal Form: rules
all have form A→ BC or A→ w .

Conversion to CNF can be done automatically.

NP → Det Nom NP → Det Nom
Nom → N | OptAP Nom Nom → book | orange | AP Nom

OptAP → ε | OptAdv A AP → heavy | orange | Adv A
A → heavy | orange A → heavy | orange

Det → a Det → a
OptAdv → ε | very Adv → very

N → book | orange

20 / 32

CYK: an example

Let’s look at a simple example.

Grammar Rules in CNF

NP → Det Nom
Nom → book | orange | AP Nom

AP → heavy | orange | Adv A
A → heavy | orange

Det → a
Adv → very

(N.B. Converting to CNF sometimes causes duplication!)

Now let’s parse: a very heavy orange book

21 / 32

Filling out the CYK chart

0 a 1 very 2 heavy 3 orange 4 book 5

1 2 3 4 5
a very heavy orange book

0 a Det NP NP

1 very Adv AP Nom Nom

2 heavy A,AP Nom Nom

3 orange Nom,A,AP Nom

4 book Nom

NP→Det Nom
Nom→book | orange | AP Nom

AP→heavy | orange | Adv A
A→heavy | orange

Det→a
Adv→very

22 / 32

CYK: The general algorithm

function CKY-Parse(words, grammar) returns table for

j ←from 1 to Length(words) do
table[j − 1, j]← {A | A→ words[j] ∈ grammar}
for i ←from j − 2 downto 0 do

for k ← i + 1 to j − 1 do
table[i , j]← table[i , j]∪

{A | A→ BC ∈ grammar ,
B ∈ table[i , k]
C ∈ table[k , j]}

23 / 32

CYK: The general algorithm

function CKY-Parse(words, grammar) returns table for

j ←from 1 to Length(words) do loop over the columns

table[j −1, j]← {A | A→ words[j] ∈ grammar} fill bottom cell

for i ←from j − 2 downto 0 do fill row i in column j

for k ← i + 1 to j − 1 do loop over split locations
table[i , j]← table[i , j]∪ between i and j

{A | A→ BC ∈ grammar , Check the grammar
B ∈ table[i , k] for rules that
C ∈ table[k, j]} link the constituents

in [i , k] with those
in [k, j]. For each
rule found store
LHS in cell [i , j].

24 / 32

From CYK Recognizer to CYK Parser

So far, we just have a chart recognizer, a way of determining
whether a string belongs to the given language.

Changing this to a parser requires recording which existing
constituents were combined to make each new constituent.

This requires another field to record the one or more ways in
which a constituent spanning (i,j) can be made from
constituents spanning (i,k) and (k,j). (More clearly displayed
in graph representation, see next lecture.)

In any case, for a fixed grammar, the CYK algorithm runs in
time O(n3) on an input string of n tokens.

The algorithm identifies all possible parses.

25 / 32

CYK-style parse charts

Even without converting a grammar to CNF, we can draw
CYK-style parse charts:

1 2 3 4 5
a very heavy orange book

0 a Det NP NP

1 very OptAdv OptAP Nom Nom

2 heavy A,OptAP Nom Nom

3 orange N,Nom,A,AP Nom

4 book N,Nom

(We haven’t attempted to show ε-phrases here. Could in principle
use cells below the main diagonal for this . . .)
However, CYK-style parsing will have run-time worse than O(n3) if
e.g. the grammar has rules A→ BCD. (Exercise: Why?)

26 / 32

Second example

Grammar Rules in CNF

S → NP VP Nominal → book|flight|money
S → X 1 VP Nominal → Nominal noun
X 1→ Aux VP Nominal → Nominal PP
S → book|include|prefer VP → book |include|prefer
S → Verb NP VPVerb → NP
S → X 2 VP → X 2 PP
S → Verb PP X 2→ Verb NP
S → VP PP VP → Verb NP
NP → TWA|Houston VP → VP PP
NP → Det Nominal PP → Preposition NP
Verb → book|include|prefer Noun→ book|flight|money

Let’s parse Book the flight through Houston!

27 / 32

Second example

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

S,
VP,
X2

S1, VP, X2,
S2, VP,

S3

[0, 1] [0, 2] [0, 3] [0, 4] [0, 5]
Det NP NP

[1, 2] [1, 3] [1, 4] [1, 5]
Nominal, Nominal

Noun

[2, 3] [2, 4] [2, 5]
Prep PP

[3, 4] [3, 5]
NP, Proper-

Noun

[4, 5]

28 / 32

Visualizing the Chart

29 / 32

Visualizing the Chart

30 / 32

Dynamic Programming as a problem-solving technique

Given a problem, systematically fill a table of solutions to
sub-problems: this is called memoization.

Once solutions to all sub-problems have been accumulated,
solve the overall problem by composing them.

For parsing, the sub-problems are analyses of sub-strings and
correspond to constituents that have been found.

Sub-trees are stored in a chart (aka well-formed substring
table), which is a record of all the substructures that have
ever been built during the parse.

Solves re-parsing problem: sub-trees are looked up, not re-parsed!
Solves ambiguity problem: chart implicitly stores all parses!

31 / 32

Summary

Parsing as search is inefficient (typically exponential time).

Alternative: use dynamic programming and memoize
sub-analysis in a chart to avoid duplicate work.

The chart can be visualized as as a matrix.

The CYK algorithm builds a chart in O(n3) time. The basic
version gives just a recognizer, but it can be made into a
parser if more info is recorded in the chart.

Reading: J&M (2nd ed), Chapter. 13, Sections 13.3–13.4
NLTK Book, Chapter. 8 (Analyzing Sentence
Structure), Section 8.4

Next lecture: the Earley parser or dynamic programming for top-
down parsing

32 / 32

	Problems with Parsing as Search
	The need for ambiguity
	The computational cost of ambiguity

	The CYK Algorithm
	Parsing as intersection
	Parsing as Dynamic Programming
	The CYK Algorithm
	Properties of the Algorithm

