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Last class

We discussed the POS tag lexicon

When do words belong to the same class? Three criteria

What tagset should we use?

What are the sources of ambiguity for POS tagging?
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1 Methods for tagging
Unigram tagging
Bigram tagging
Tagging using Hidden Markov Models: Viterbi algorithm

Reading: Jurafsky & Martin, chapters (5 and) 6.
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Before we get started

Question you should always ask yourself:

How hard is this problem?

For POS tagging, this boils down to:

How ambiguous are parts of speech, really?

If most words have unambiguous POS, then we can probably write
a simple program that solves POS tagging with just a lookup
table. E.g. “Whenever I see the word the, output DT.”

This is an empirical question. To answer it, we need data.
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Corpus annotation

A corpus (plural corpora) is a computer-readable collection of
natural language text (or speech) used as a source of information
about the language: e.g. what words or constructions can occur in
practice, and with what frequencies?
To answer the question about POS ambiguity, we use corpora in
which each word has been annotated with its POS tag, e.g.

Our/PRP\$ enemies/NNS are/VBP innovative/JJ and/CC

resourceful/JJ ,/, and/CC so/RB are/VB we/PRP ./.

They/PRP never/RB stop/VB thinking/VBG about/IN new/JJ

ways/NNS to/TO harm/VB our/PRP\$ country/NN and/CC

our/PRP\$ people/NN, and/CC neither/DT do/VB we/PRP ./.
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Empirical upper bounds: inter-annotator agreement

Even for humans, tagging sometimes poses difficult decisions.
E.g. Words in -ing: adjectives (JJ), or verbs in gerund form (VBG)?

a boring/JJ lecture a very boring lecture
? a lecture that bores

the falling/VBG leaves *the very falling leaves
the leaves that fall

a revolving/VBG? door *a very revolving door
a door that revolves
*the door seems revolving

sparkling/JJ? lemonade ? very sparkling lemonade
lemonade that sparkles
the lemonade seems sparkling

In view of such problems, we can’t expect 100% accuracy from an
automatic tagger.
In the Penn Treebank, annotators disagree around 3.5% of the
time. Put another way: if we assume that one annotator tags
perfectly, and then measure the accuracy of another annotator by
comparing with the first, they will only be right about 96.5% of
the time. We can hardly expect a machine to do better!

6 / 46



Word types and tokens

Need to distinguish word tokens (particular occurrences in a
text) from word types (distinct vocabulary items).

We’ll count different inflected or derived forms (e.g. break,
breaks, breaking) as distinct word types.

A single word type (e.g. still) may appear with several POS.

But most words have a clear most frequent POS.

Question: How many tokens and types in the following? Ignore
case and punctuation.

Esau sawed wood. Esau Wood would saw wood. Oh, the
wood Wood would saw!

1 14 tokens, 6 types

2 14 tokens, 7 types

3 14 tokens, 8 types

4 None of the above.
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Extent of POS Ambiguity

The Brown corpus (1,000,000 word tokens) has 39,440 different
word types.

35340 have only 1 POS tag anywhere in corpus (89.6%)

4100 (10.4%) have 2 to 7 POS tags

So why does just 10.4% POS-tag ambiguity by word type lead to
difficulty?
This is thanks to Zipfian distribution: many high-frequency words
have more than one POS tag.
In fact, more than 40% of the word tokens are ambiguous.

He wants to/TO go.
He went to/IN the store.

He wants that/DT hat.
It is obvious that/CS he wants a hat.
He wants a hat that/WPS fits.

8 / 46



Word Frequencies in Different Languages

Ambiguity by part-of-speech tags:

Language Type-ambiguous Token-ambiguous
English 13.2% 56.2%
Greek <1% 19.14%
Japanese 7.6% 50.2%
Czech <1% 14.5%
Turkish 2.5% 35.2%
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Word Frequency – Properties of Words in Use

Take any corpus of English like the Brown Corpus or Tom Sawyer
and sort its words by how often they occur.

word Freq. (f ) Rank (r) f · r
the 3332 1 3332
and 2972 2 5944
a 1775 3 5235
he 877 10 8770
but 410 20 8400
be 294 30 8820
there 222 40 8880
one 172 50 8600
about 158 60 9480
more 138 70 9660
never 124 80 9920
Oh 116 90 10440
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Word Frequency – Properties of Words in Use

Take any corpus of English like the Brown Corpus or Tom Sawyer
and sort its words by how often they occur.

word Freq. (f ) Rank (r) f · r
two 104 100 10400
turned 51 200 10200
you’ll 30 300 9000
name 21 400 8400
comes 16 500 8000
group 13 600 7800
lead 11 700 7700
friends 10 800 8000
begin 9 900 8100
family 8 1000 8000
brushed 4 2000 8000
sins 2 3000 6000
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Zipf’s law

Given some corpus of natural language utterances, the frequency
of any word is inversely proportional to its rank in the frequency
table (observation made by Harvard linguist George Kingsley Zipf).

Zipf’s law states that: f ∝ 1
r

There is a constant k such that: f · r = k .
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Zipf’s law for the Brown corpus
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Zipf’s law

According to Zipf’s law:

There is a very small number of very common words.

There is a small-medium number of middle frequency words.

There is a very large number of words that are infrequent.

(It’s not fully understood why Zipf’s law works so well for word
frequencies.)
In fact, many other kinds of data conform closely to a Zipfian
distribution:

Populations of cities.

Sizes of earthquakes.

Amazon sales rankings.
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Some tagging strategies

Now we have a sense that POS tagging is non-trivial. We’ll look at
several methods or strategies for automatic tagging.

One simple strategy: just assign to each word its most
common tag. (So still will always get tagged as an adverb —
never as a noun, verb or adjective.) Call this unigram tagging,
since we only consider one token at a time.
Very, very important: compute the unigram frequency on
different data from which you test the tagger. Why?

Surprisingly, even this crude approach typically gives around
90% accuracy. (State-of-the-art is 96–98%).

Can we do better? We’ll look briefly at bigram tagging, then
at Hidden Markov Model tagging.
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Bigram tagging

Remember: linguistic tests often look at adjacent POS. (e.g. nouns
are often preceded by determiners). Let’s use this idea: we’ll look
at pairs of adjacent POS.
For each word (e.g. still), tabulate the frequencies of each possible
POS given the POS of the preceding word.

Example (with made-up numbers):

still DT MD JJ . . .

NN 8 0 6
JJ 23 0 14

VB 1 12 2
RB 6 45 3

Given a new text, tag the words from left to right, assigning each
word the most likely tag given the preceding one.

Could also consider trigram (or more generally n-gram) tagging,
etc. But the frequency matrices would quickly get very large, and
also (for realistic corpora) too ‘sparse’ to be really useful.
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Problems with bigram tagging

One incorrect tagging choice might have unintended effects:

The still smoking remains of the campfire
Intended: DT RB VBG NNS IN DT NN

Bigram: DT JJ NN VBZ . . .

No lookahead: choosing the ‘most probable’ tag at one stage
might lead to highly improbable choice later.

The still was smashed
Intended: DT NN VBD VBN

Bigram: DT JJ VBD?

We’d prefer to find the overall most likely tagging sequence given
the bigram frequencies. This is what the Hidden Markov Model
(HMM) approach achieves.
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Hidden Markov Models

The idea is to model the process by which words were
generated using a probabilistic process.

Think of the output as visible to us, but the internal states of
the process (which contain POS information) as hidden.

For some outputs, there might be several possible ways of
generating them i.e. several sequences of internal states. Our
aim is to compute the sequence of hidden states with the
highest probability.

Specifically, our processes will be ‘FSTs with probabilities’.
Simple, though not a very flattering model of human language
users!
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Generating a Sequence

Hidden Markov models can be thought of as devices that generate
sequences with hidden states:

Edinburgh has a very rich history .
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Generating a Sequence

Hidden Markov models can be thought of as devices that generate
sequences with hidden states:

Edinburgh
NNP

p(NNP|〈s〉)× p(Edinburgh|NNP)
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Generating a Sequence

Hidden Markov models can be thought of as devices that generate
sequences with hidden states:

Edinburgh has
NNP VBZ

p(NNP|〈s〉)× p(Edinburgh|NNP)

p(VBZ |NNP)× p(has|VBZ )
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Generating a Sequence

Hidden Markov models can be thought of as devices that generate
sequences with hidden states:

Edinburgh has a
NNP VBZ DT

p(NNP|〈s〉)× p(Edinburgh|NNP)

p(VBZ |NNP)× p(has|VBZ )

p(DT |VBZ )× p(a|DT )
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Generating a Sequence

Hidden Markov models can be thought of as devices that generate
sequences with hidden states:

Edinburgh has a very
NNP VBZ DT RB

p(NNP|〈s〉)× p(Edinburgh|NNP)

p(VBZ |NNP)× p(has|VBZ )

p(DT |VBZ )× p(a|DT )

p(RB|DT )× p(very |RB)
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Generating a Sequence

Hidden Markov models can be thought of as devices that generate
sequences with hidden states:

Edinburgh has a very rich
NNP VBZ DT RB JJ

p(NNP|〈s〉)× p(Edinburgh|NNP)

p(VBZ |NNP)× p(has|VBZ )

p(DT |VBZ )× p(a|DT )

p(RB|DT )× p(very |RB)

p(JJ|RB)× p(rich|JJ)
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Generating a Sequence

Hidden Markov models can be thought of as devices that generate
sequences with hidden states:

Edinburgh has a very rich history
NNP VBZ DT RB JJ NN

p(NNP|〈s〉)× p(Edinburgh|NNP)

p(VBZ |NNP)× p(has|VBZ )

p(DT |VBZ )× p(a|DT )

p(RB|DT )× p(very |RB)

p(JJ|RB)× p(rich|JJ)

p(NN|JJ)× p(history |NN)

p(STOP|NN)
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Definition of Hidden Markov Models

For our purposes, a Hidden Markov Model (HMM) consists of:

A set Q = {q0, q1, . . . , qT} of states, with q0 the start state.
(Our non-start states will correspond to parts-of-speech).

A transition probability matrix
A = (aij | 0 ≤ i ≤ T , 1 ≤ j ≤ T ), where aij is the probability

of jumping from qi to qj . For each i , we require
T∑
j=1

aij = 1.

For each non-start state qi and word type w , an emission
probability bi (w) of outputting w upon entry into qi . (Ideally,
for each i , we’d have

∑
w bi (w) = 1.)

We also suppose we’re given an observed sequence w1,w2 . . . ,wn

of word tokens generated by the HMM.
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Transition Probabilities
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Emission Probabilities
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Transition and Emission Probabilities

VB TO NN PRP
<s> .019 .0043 .041 .67
VB .0038 .035 .047 .0070
TO .83 0 .00047 0
NN .0040 .016 .087 .0045
PRP .23 .00079 .001 .00014

I want to race
VB 0 .0093 0 .00012
TO 0 0 .99 0
NN 0 .000054 0 .00057
PRP .37 0 0 0
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How Do we Search for Best Tag Sequence?

We have defined an HMM, but how do we use it? We are given a
word sequence and must find their corresponding tag sequence.

It’s easy to compute the probability of generating a word
sequence w1 . . .wn via a specific tag sequence t1 . . . tn: let t0
denote the start state, and compute

T∏
i=1

P(ti |ti−1).P(wi |ti ) (1)

using the transition and emission probabilities.

But how do we find the most likely tag sequence?
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Question

Given n word tokens and a tagset with T choices per token, how
many tag sequences do we have to evaluate?

1 |T | tag sequences

2 n tag sequences

3 |T | × n tag sequences

4 |T |n tag sequences

Bad news: there are |T |n sequences.

Good news: We can do this efficiently using dynamic
programming and the Viterbi algorithm.
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The HMM trellis

NN

TO

VB

PRP

NN

TO

VB

NN

TO

VB

NN

TO

VB

PRP PRP PRP

START

I want to race
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The Viterbi Algorithm

Keep a chart of the form Table(POS, i) where POS ranges over
the POS tags and i ranges over the indices in the sentence.

For all T and i :

Table(T , i + 1)← max
T ′

Table(T ′, i)× p(T |T ′)× p(wi+1|T )

and

Table(T , 0)← p(T |〈s〉)

Table(., n) will contain the probability of the most likely sequence.
To get the actual sequence, we need backpointers.
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The Viterbi algorithm

Let’s now tag the newspaper headline:

deal talks fail

Note that each token here could be a noun (N) or a verb (V).
We’ll use a toy HMM given as follows:

to N to V

from start .8 .2
from N .4 .6
from V .8 .2

Transitions

deal fail talks

N .2 .05 .2
V .3 .3 .3

Emissions
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The Viterbi matrix

deal talks fail

N

V

to N to V
from start .8 .2

from N .4 .6
from V .8 .2

Transitions

deal fail talks
N .2 .05 .2
V .3 .3 .3

Emissions

Table(T , i + 1)← max
T ′

Table(T ′, i)× p(T |T ′)× p(wi+1|T )
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The Viterbi matrix

deal talks fail

N .8x.2 = .16 ← .16x.4x.2 = .0128 ↙ .0288x.8x.05 = .001152
(since .16x.4 > .06x.8) (since .0128x.4 < 0.0288x.8)

V .2x.3 = .06 ↖ .16x.6x.3 = .0288 ↖ .0128x.6x.3 = .002304
(since .16x.6 > .06x.2) (since .0128x.6 > 0.0288x.2)

Looking at the highest probability entry in the final column and
chasing the backpointers, we see that the tagging N N V wins.
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The Viterbi Algorithm: second example

q4 NN 0

q3 TO 0

q2 VB 0

q1 PRP 0

qo start 1.0

<s> I want to race
w1 w2 w3 w4

For each state qj at time i , compute

vi (j) =
n

max
k=1

vi−1(k)akjbj(wi )
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The Viterbi Algorithm

q4 NN 0
q3 TO 0
q2 VB 0
q1 PRP 0
qo start 1.0

<s> I want to race
w1 w2 w3 w4

1 Create probability matrix, with one column for each
observation (i.e., word token), and one row for each non-start
state (i.e., POS tag).

2 We proceed by filling cells, column by column.

3 The entry in column i , row j will be the probability of the
most probable route to state qj that emits w1 . . .wi .
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The Viterbi Algorithm

q4 NN 0 1.0× .041× 0

q3 TO 0 1.0× .0043× 0

q2 VB 0 1.0× .19× 0

q1 PRP 0 1.0× .67× .37

qo start 1.0

<s> I want to race
w1 w2 w3 w4

For each state qj at time i , compute

vi (j) =
n

max
k=1

vi−1(k)akjbj(wi )

vi−1(k) is previous Viterbi path probability, akj is
transition probability, and bj(wi ) is emission probability.

There’s also an (implicit) backpointer from cell (i , j) to the
relevant (i − 1, k), where k maximizes vi−1(k)akj .
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The Viterbi Algorithm

q4 NN 0 0 .025× .0012× 0.000054

q3 TO 0 0 .025× .00079× 0

q2 VB 0 0 .025× .23× .0093

q1 PRP 0 .025 .025× .00014× 0

q0 start 1.0

<s> I want to race
w1 w2 w3 w4

For each state qj at time i , compute

vi (j) =
n

max
k=1

vi−1(k)akjbj(wi )

vi−1(k) is previous Viterbi path probability, akj is
transition probability, and bj(wi ) is emission probability.

There’s also an (implicit) backpointer from cell (i , j) to the
relevant (i − 1, k), where k maximizes vi−1(k)akj .
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The Viterbi Algorithm

q4 NN 0 0 .000000002 .000053× .047× 0

q3 TO 0 0 0 .000053× .035× .99

q2 VB 0 0 .00053 .000053× .0038× 0

q1 PRP 0 .025 0 .000053× .0070× 0

q0 start 1.0

<s> I want to race
w1 w2 w3 w4

For each state qj at time i , compute

vi (j) =
n

max
k=1

vi−1(k)akjbj(wi )

vi−1(k) is previous Viterbi path probability, akj is
transition probability, and bj(wi ) is emission probability.

There’s also an (implicit) backpointer from cell (i , j) to the
relevant (i − 1, k), where k maximizes vi−1(k)akj .
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The Viterbi Algorithm

q4 NN 0 0 .0000000020 .0000018× .00047× .00057

q3 TO 0 0 0 .0000018.0000018×0×0

q2 VB 0 0 .00053 0 .0000018×.83×.00012

q1 PRP0 .025 0 0 .0000018× 0× 0

q0 start1.0

<s> I want to race
w1 w2 w3 w4

For each state qj at time i , compute

vi (j) =
n

max
k=1

vi−1(k)akjbj(wi )

vi−1(k) is previous Viterbi path probability, akj is
transition probability, and bj(wi ) is emission probability.

There’s also an (implicit) backpointer from cell (i , j) to the
relevant (i − 1, k), where k maximizes vi−1(k)akj .

43 / 46



The Viterbi Algorithm

q4 NN 0 0 .000000002 0 4.8222e-13

q3 TO 0 0 0 .0000018 0

q2 VB 0 0 .00053 0 1.7928e-10

q1 PRP 0 .025 0 0 0

q0 start 1.0

<s> I want to race
w1 w2 w3 w4

For each state qj at time i , compute

vi (j) =
n

max
k=1

vi−1(k)akjbj(wi )

vi−1(k) is previous Viterbi path probability, akj is
transition probability, and bj(wi ) is emission probability.

There’s also an (implicit) backpointer from cell (i , j) to the
relevant (i − 1, k), where k maximizes vi−1(k)akj .
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Connection between HMMs and finite state machines

Hidden Markov models are finite state machines with probabilities
added to them.

If we think of finite state automaton as generating a string when
randomly going through states (instead of scanning a string), then
hidden Markov models are such FSMs where there is a specific
probability for generating each symbol at each state, and a specific
probability for transitioning from one state to another.

As such, the Viterbi algorithm can be used to find the most likely
sequence of states in a probabilistic FSM, given a specific input
string.

Question: where do the probabilities come from?
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Example Demo

http://nlp.stanford.edu:8080/parser/

Relies both on “distributional” and “morphological” criteria

Uses a model similar to hidden Markov models
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