Types and Static Type Checking
(Introducing Micro-Haskell)

Informatics 2A: Lecture 13

John Longley

School of Informatics
University of Edinburgh
jrle@inf.ed.ac.uk

18 October 2016

1/21

jrl@inf.ed.ac.uk

© Types
© Micro-Haskell: crash course

© MH Types & Abstract Syntax

@ Type Checking

2/21

So far in the course, we have examined the machinery that, in the
case of a programming language, takes us from a program text to
a parse tree, via the stages of lexing and parsing.

This lecture looks at two further stages of the pipeline:

@ The parse tree may be converted into an abstract syntax tree
(AST), a kind of simplified parse tree which contains just the
information needed for further processing.

@ The resulting AST may then be subjected to various checks to
ensure that certain obvious errors are avoided (static analysis).
One common form of static analysis is type-checking.

After this, the AST will be fed to an evaluator or interpreter to
execute the program—or else to a compiler to translate it into
executable low-level code.

3/21

Types

Consider the expression
3 + True

How is a compiler or interpreter supposed to execute this?

It does not make sense to apply the numerical addition operation
to the argument True, which is a boolean.

This is an example of a type error.
Different programming languages take different approaches to such

€rrors.

4/21

Approaches to type errors

Laissez faire: Even if an operation does not make sense for the
data its being applied to, just go ahead and apply it to the (binary)
machine representation of the data. In some cases this will do
something harmful. In other cases it might even be useful.

Dynamic checking: At the point during execution at which a type
mismatch (between operation and argument) is encountered, raise
an error. This gives rise to helpful runtime errors.

Static checking: Check (the AST of) the program to ensure that
all operations are applied in a type-meaningful way. If not, identify
the error(s), and disallow the program from being run until

corrected. This allows many program errors to be identified before

execution.
5/21

Approaches to type errors

Laissez faire: Even if an operation does not make sense for the
data its being applied to, just go ahead and apply it to the (binary)
machine representation of the data. In some cases this will do
something harmful. In other cases it might even be useful.
(Adopted, e.g., in C.)

Dynamic checking: At the point during execution at which a type
mismatch (between operation and argument) is encountered, raise
an error. This gives rise to helpful runtime errors.

Static checking: Check (the AST of) the program to ensure that
all operations are applied in a type-meaningful way. If not, identify
the error(s), and disallow the program from being run until

corrected. This allows many program errors to be identified before

execution.
5/21

Approaches to type errors

Laissez faire: Even if an operation does not make sense for the
data its being applied to, just go ahead and apply it to the (binary)
machine representation of the data. In some cases this will do
something harmful. In other cases it might even be useful.
(Adopted, e.g., in C.)

Dynamic checking: At the point during execution at which a type
mismatch (between operation and argument) is encountered, raise
an error. This gives rise to helpful runtime errors.

(Adopted, e.g., in Python.)

Static checking: Check (the AST of) the program to ensure that
all operations are applied in a type-meaningful way. If not, identify
the error(s), and disallow the program from being run until

corrected. This allows many program errors to be identified before

execution.
5/21

Approaches to type errors

Laissez faire: Even if an operation does not make sense for the
data its being applied to, just go ahead and apply it to the (binary)
machine representation of the data. In some cases this will do
something harmful. In other cases it might even be useful.
(Adopted, e.g., in C.)

Dynamic checking: At the point during execution at which a type
mismatch (between operation and argument) is encountered, raise
an error. This gives rise to helpful runtime errors.

(Adopted, e.g., in Python.)

Static checking: Check (the AST of) the program to ensure that
all operations are applied in a type-meaningful way. If not, identify
the error(s), and disallow the program from being run until

corrected. This allows many program errors to be identified before

execution. (Adopted, e.g., in Java and Haskell.)
5/21

In this lecture we look at static stype-checking using a fragment of
Haskell as the illustrative programming language.

We call the fragment of Haskell Micro-Haskell (MH for short).

MH is the basis of this year's Inf2A Assignment 1, which uses it to
illustrate the full formal-language-processing pipeline.

For those who have never previously met Haskell or who could
benefit from a Haskell refresher, we start with a gentle
introduction to MH.

6/21

Micro-Haskell: crash course

Micro-Haskell: a crash course

In mathematics, we are used to defining functions via equations,
eg. f(x)=3x+7.

The idea in functional programming is that programs should look
somewhat similar to mathematical definitions:

f x=x+x+x + 7 ;

This function expects an argument x of integer type (let's say),
and returns a result of integer type. We therefore say the type of £
is Integer -> Integer (“integer to integer”).

By contrast, the definition
g X = X+X <= x+7

returns a boolean result, so the type of g is Integer -> Bool.
7/21

Micro-Haskell: crash course

Multi-argument functions

What about a function of two arguments, say x :: Integer and
y ::Bool ? E.g.
h x y = if y then x else 0-x ;
Think of h as a function that accepts arguments one at a time. It

accepts an integer and returns another function, which itself
accepts a boolean and returns an integer.

So the type of h is Integer -> (Bool -> Integer). By
convention, we treat —> as right-associative, so we can write this
just as Integer -> Bool -> Integer.

Note incidentally the use of 'if’ to create expressions rather than
commands. In Java, the above if-expression could be written as

(y 2 x: 0-x)

8/21

Micro-Haskell: crash course

Typechecking in Micro-Haskell

In (Micro-)Haskell, the type of h is explicitly given as part of the
function definition:

h :: Integer -> Bool -> Integer ;
h xy = 1if y then x else 0-x ;

The typechecker then checks that the expression on the RHS does
indeed have type Integer, assuming x and y have the specified
argument types Integer and Bool respectively.

Function definitions can also be recursive:

div :: Integer -> Integer -> Integer ;
div x y = if x < y then 0 else 1 + div (x - y) v ;

Here the typechecker will check that the RHS has type Integer,
assuming that x and y have type Integer and also that div itself
has the stated type.

9/21

Micro-Haskell: crash course

Higher-order functions

The arguments of a function in MH can themselves be functions!

F :: (Integer -> Integer) -> Integer ;
Fg=g0+gl+g2+g3;
The typechecker then checks that the expression on the RHS does

indeed have type Integer, assuming x and y have the specified
argument types Integer and Bool respectively.

For an example application of F, consider the following MH
function.
inc :: Integer -> Integer ;
inc x = x+1 ;
If we then type
F inc
into an evaluator (i.e., interpreter) for MH, the evaluator will

compute that the result of the expression F inc is
10/21

Micro-Haskell: crash course

Higher-order functions

The arguments of a function in MH can themselves be functions!

F :: (Integer -> Integer) -> Integer ;
Fg=g0+gl+g2+g3;
The typechecker then checks that the expression on the RHS does

indeed have type Integer, assuming x and y have the specified
argument types Integer and Bool respectively.

For an example application of F, consider the following MH
function.
inc :: Integer -> Integer ;
inc x = x+1 ;
If we then type
F inc
into an evaluator (i.e., interpreter) for MH, the evaluator will

compute that the result of the expression F inc is 10.
10/21

Micro-Haskell: crash course

In principle, the —=> constructor can be iterated to produce very
complex types, e.g.

(((Integer->Bool)->Bool)->Integer)->Integer

Such monsters rarely arise in ordinary programs.

Nevertheless, MH (and full Haskell) has a precise way of checking
whether the function definitions in the program correctly respect
the types that have been assigned to them.

Before discussing this process, we summarize the types of MH.

11/21

MH Types & Abstract Syntax

MH Types

The official grammar of MH types (in Assignment 1 handout) is

Type — Typel TypeOps
TypeOps — € | -> Type
Typel — Integer | Bool | (Type)
This is an LL(1) grammar for convenient parsing.

However, a parse tree for this grammar contains more detail than
is required for understanding a type expression.

The following conceptually simpler grammar implements the
abstract syntax of types

Type — Integer | Bool | Type -> Type

12/21

MH Types & Abstract Syntax

Abstract Syntax Trees

The abstract syntax grammar is not appropriate for parsing:
@ It is ambiguous
@ It does not include all aspects of the concrete syntax. In
particular, there are no brackets.
However parse trees for the abstract syntax grammar
unambiguously correspond to types.

Instead of working with parse trees for the concrete LL(1)
grammar, we convert such parse trees to parse trees for the
abstract syntax grammar. Such parse trees are called abstract
syntax trees (AST).

13/21

MH Types & Abstract Syntax

Concrete versus abstract syntax

The distinction between concrete and abstract syntax is not
specific to types, but applies generally to formal and natural
languages.

In the case of an LL(1)-predictively parsed formal languages, we
have the following parsing pipeline:

Lexed language phrase
(sequence of lexemes)
I (LL(1) predictive parsing)
LL(1)-grammar parse tree
(uniquely determined)

(8 (Conversion of parse trees)
AST

14/21

Type Checking

Type checking

Main ideas.

© Type checking is done compositionally by breaking down
expressions into their subexpressions, type-checking the
subexpressions, and ensuring that the top-level compound
expression can then be given a type itself.

@ Throughout the process, a type environment is maintained
which records the types of all variables in the expression.

15/21

Type Checking

[llustrative example

h :: Integer -> Bool -> Integer ;
h x y = if y then x else 1+x ;

First the type environment [is set according to the the type
declaration.

‘= h :: Integer -> Bool -> Integer

Next, the type environment is extended to assign types to the
argument variables x and y.

'= h :: Integer -> Bool -> Integer,
x :: Integer,

y :: Bool

16/21

Type Checking

lllustrative example (continued)

This is done in order to be consistent with the general rule
@ In any expression eje; (a function application) we need e; to
have a function type t; => t» with ey having the correct type
t; for its argument. The resulting type of eje; is then t.
Thus, in our example, we have types
h x :: Bool -> Integer

and

h x y :: Integer

17/21

Type Checking

lllustrative example (continued)

h :: Integer -> Bool -> Integer ;
h x y = if y then x else 1+x ;

We have
h xy :: Integer

with the type environment

= Integer -> Bool -> Integer,

h
x :: Integer,
y :: Bool

Our remaining task is to type-check (relative to I') the expression:

if y then x else 1+x :: Integer

18/21

Type Checking

lllustrative example (continued)

General rule:

@ In any expression if e; then e; else e3 we need e to have
type Bool, and ey and e3 to have the same type t. The
resulting type of if e; then e, else e3 is then t.

In our example, we need to type-check
if y then x else 1+x :: Integer

we have y :: Bool and x :: Integer declared in [, so it
remains only to type-check

1+x :: Integer

19/21

Type Checking

lllustrative example (completed)

General rule:

@ In any expression e; + e; we need e; and e, to have type
Integer. The resulting type of e; + e is then Integer.

In our example, we need to type-check
1+x :: Integer

we have x :: Integer declared in T, also the numeral 1 is (of
course) given type Integer.

Thus indeed we have verified
1+x :: Integer
whence, putting everything together,
if y then x else 1+x :: Integer

as required. 20/21

Type Checking

Static type checking — summary

The program is type-checked purely by looking at the AST of the
program.

Thus type errors are picked up before the program is executed.
Indeed, execution is disallowed for programs that do not type
check.

Static type checking gives us a guarantee: no type errors will occur
during execution.

This guarantee can be rigorously established as a mathematical
theorem, using a mathematical model of program execution called
operational semantics. Operational semantics lies at the heart of
the Evaluator provided for Part D of Assignment 1. We shall
meet operational semantics later in the course (Lecture 27).

21/21

	Types
	Micro-Haskell: crash course
	MH Types & Abstract Syntax
	Type Checking

