
Languages and Automata
Some formal definitions

Determinization

Finite Automata
Informatics 2A: Lecture 3

John Longley

School of Informatics
University of Edinburgh
jrl@inf.ed.ac.uk

23 September 2016

1 / 30

jrl@inf.ed.ac.uk

Languages and Automata
Some formal definitions

Determinization

1 Languages and Automata
What is a ‘language’?
Finite automata: recap

2 Some formal definitions
Finite automaton
Regular language
DFAs and NFAs

3 Determinization
Execution of NFAs
The subset construction

2 / 30

Languages and Automata
Some formal definitions

Determinization

What is a ‘language’?
Finite automata: recap

Languages and alphabets

Throughout this course, languages will consist of finite sequences
of symbols drawn from some given alphabet.
An alphabet Σ is simply some finite set of letters or symbols which
we treat as ‘primitive’. These might be . . .

English letters: Σ = {a, b, . . . , z}
Decimal digits: Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
ASCII characters: Σ = {0, 1, . . . , a, b, . . . , ?, !, . . .}
Programming language ‘tokens’: Σ = {if, while, x,==, . . .}
Words in (some fragment of) a natural language.

‘Primitive’ actions performable by a machine or system, e.g.
Σ = {insert50p, pressButton1, . . .}

In toy examples, we’ll use simple alphabets like {0, 1} or {a, b, c}.

3 / 30

Languages and Automata
Some formal definitions

Determinization

What is a ‘language’?
Finite automata: recap

What is a ‘language’?

A language over an alphabet Σ will consist of finite sequences
(strings) of elements of Σ. E.g. the following are strings over the
alphabet Σ = {a, b, c}:

a b ab cab bacca cccccccc

There’s also the empty string , which we usually write as ε.
(Note that ε isn’t itself a symbol in the alphabet!)

A language over Σ is simply a (finite or infinite) set of strings over
Σ. A string s is legal in the language L if and only if s ∈ L.

We write Σ∗ for the set of all possible strings over Σ. So a
language L is simply a subset of Σ∗. (L ⊆ Σ∗)

(N.B. This is just a technical definition — any real language is
obviously much more than this!)

4 / 30

Languages and Automata
Some formal definitions

Determinization

What is a ‘language’?
Finite automata: recap

Ways to define a language

There are many ways in which we might formally define a
language:

Direct mathematical definition, e.g.

L1 = {a, aa, ab, abbc}
L2 = {axb | x ∈ Σ∗}
L3 = {anbn | n ≥ 0}

Regular expressions (see Lecture 5): e.g. a(a + b)∗b.

Formal grammars (see Lecture 9 onwards): e.g. S → ε | aSb.

Specify some machine that tests if a string is legal or not.

The more complex the language, the more complex the machine
might need to be. As we shall see, each level in the Chomsky
hierarchy is correlated with a certain class of machines.

5 / 30

Languages and Automata
Some formal definitions

Determinization

What is a ‘language’?
Finite automata: recap

Finite automata (a.k.a. finite state machines)

0

1 1

0

even odd

This is an example of a finite automaton over Σ = {0, 1}.
At any moment, the machine is in one of 2 states. From any state,
each symbol in Σ determines a ‘destination’ state we can jump to.

The state marked with the in-arrow is picked out as the starting
state. So any string in Σ∗ gives rise to a sequence of states.

Certain states (with double circles) are designated as accepting.
We call a string ‘legal’ if it takes us from the start state to some
accepting state. In this way, the machine defines a language
L ⊆ Σ∗: the language L is the set of all legal strings.

6 / 30

Languages and Automata
Some formal definitions

Determinization

What is a ‘language’?
Finite automata: recap

Quick test question . . .

0

1 1

0

even odd

For the finite state machine shown here, which of the following
strings are legal (i.e. accepted)?

1 ε

2 11

3 1010

4 1101

Answer: 1,2,3 are legal, 4 isn’t.

7 / 30

Languages and Automata
Some formal definitions

Determinization

What is a ‘language’?
Finite automata: recap

Quick test question . . .

0

1 1

0

even odd

For the finite state machine shown here, which of the following
strings are legal (i.e. accepted)?

1 ε

2 11

3 1010

4 1101

Answer: 1,2,3 are legal, 4 isn’t.

7 / 30

Languages and Automata
Some formal definitions

Determinization

What is a ‘language’?
Finite automata: recap

More generally, for any current state and any symbol, there may be
zero, one or many new states we can jump to.

q0 q1 q4 q5q2 q3

0,1

1 0,10,10,10,1 0,1 0,1 0,1

Here there are two transitions for ‘1’ from q0, and none from q5.

The language associated with the machine is defined to consist of
all strings that are accepted under some possible execution run.

The language associated with the example machine above is

{x ∈ Σ∗ | the fifth symbol from the end of x is 1}

8 / 30

Languages and Automata
Some formal definitions

Determinization

Finite automaton
Regular language
DFAs and NFAs

Formal definition of finite automaton

Formally, a finite automaton with alphabet Σ consists of:

A finite set Q of states,

A transition relation ∆ ⊆ Q × Σ× Q,

A set S ⊆ Q of possible starting states.

A set F ⊆ Q of accepting states.

9 / 30

Languages and Automata
Some formal definitions

Determinization

Finite automaton
Regular language
DFAs and NFAs

Example formal definition

q0 q1 q4 q5q2 q3

0,1

1 0,10,10,10,1 0,1 0,1 0,1

Q = {q0, q1, q2, q3, q4, q5}

∆ = { (q0, 0, q0), (q0, 1, q0), (q0, 1, q1), (q1, 0, q2),

(q1, 1, q2), (q2, 0, q3), (q2, 1, q3), (q3, 0, q4),

(q3, 1, q4), (q4, 0, q5), (q4, 1, q5) }

S = {q0}

F = {q5}

10 / 30

Languages and Automata
Some formal definitions

Determinization

Finite automaton
Regular language
DFAs and NFAs

Regular language

Suppose M = (Q,∆,S ,F) is a finite automaton with alphabet Σ.

We say that a string x ∈ Σ∗ is accepted if there exists a path
through the set of states Q, starting at some state s ∈ S , ending
at some state f ∈ F , with each step taken from the ∆ relation,
and with the path as a whole spelling out the string x .

This enables us to define the language accepted by M:

L(M) = {x ∈ Σ∗ | x is accepted by M}

We call a language L ⊆ Σ∗ regular if L = L(M) for some finite
automaton M.

Regular languages are the subject of lectures 4–8 of the course.

11 / 30

Languages and Automata
Some formal definitions

Determinization

Finite automaton
Regular language
DFAs and NFAs

DFAs and NFAs

A finite automaton with alphabet Σ is deterministic if:

It has exactly one starting state.

For every state q ∈ Q and symbol a ∈ Σ there is exactly one
state q′ for which there exists a transition q

a→ q′ in ∆.

The first condition says that S is a singleton set.
The second condition says that ∆ specifies a function Q ×Σ→ Q.

Deterministic finite automata are usually abbreviated DFAs.

General finite automata are usually called nondeterministic, by way
of contrast, and abbreviated NFAs.

Note that every DFA is an NFA.

12 / 30

Languages and Automata
Some formal definitions

Determinization

Finite automaton
Regular language
DFAs and NFAs

Example

0

1 1

0

even odd

This is a DFA (and hence an NFA).

q0 q1 q4 q5q2 q3

0,1

1 0,10,10,10,1 0,1 0,1 0,1

This is an NFA but not a DFA.

13 / 30

Languages and Automata
Some formal definitions

Determinization

Finite automaton
Regular language
DFAs and NFAs

Challenge question

Consider the following NFA over {a, b, c}:

a

a

b

c

What is the minimum number of states of an equivalent DFA?

14 / 30

Languages and Automata
Some formal definitions

Determinization

Finite automaton
Regular language
DFAs and NFAs

Solution

An equivalent DFA must have at least 5 states!

b

c

b

c

a a,b,c

(garbage state)

. . . .

. . . .

15 / 30

Languages and Automata
Some formal definitions

Determinization

Finite automaton
Regular language
DFAs and NFAs

Specifying a DFA

Clearly, a DFA with alphabet Σ can equivalently be given by:

A finite set Q of states,

A transition function δ : Q × Σ→ Q,

A single designated starting state s ∈ Q,

A set F ⊆ Q of accepting states.

Example:

Q = {even, odd}

δ :

0 1

even odd even
odd even odd

s = even

F = {even}

16 / 30

Languages and Automata
Some formal definitions

Determinization

Execution of NFAs
The subset construction

Running a finite automaton

DFAs are dead easy to implement and efficient to run. We don’t
need much more than a two-dimensional array for the transition
function δ. Given an input string x it is easy to follow the unique
path determined by x and so determine whether or not the DFA
accepts x .

It is by no means so obvious how to run an NFA over an input
string x . How do we prevent ourselves from making incorrect
nondeterministic choices?

Solution: At each stage in processing the string, keep track of all
the states the machine might possibly be in.

17 / 30

Languages and Automata
Some formal definitions

Determinization

Execution of NFAs
The subset construction

Executing an NFA: example

Given an NFA N over Σ and a string x ∈ Σ∗, how can we in
practice decide whether x ∈ L(N)?

We illustrate with the running example below.

q0

q2

q1

a

a,b

a,b

a

a

String to process: aba

18 / 30

Languages and Automata
Some formal definitions

Determinization

Execution of NFAs
The subset construction

Stage 0: initial state

At the start, the NFA can only be in the initial state q0.

q0

q2

q1

a

a,b

a,b

a

a

String to process: aba
Processed so far: ε
Next symbol: a

19 / 30

Languages and Automata
Some formal definitions

Determinization

Execution of NFAs
The subset construction

Stage 1: after processing ‘a’

The NFA could now be in either q0 or q1.

q0

q2

q1

a

a,b

a,b

a

a

String to process: aba
Processed so far: a
Next symbol: b

20 / 30

Languages and Automata
Some formal definitions

Determinization

Execution of NFAs
The subset construction

Stage 2: after processing ‘ab’

The NFA could now be in either q1 or q2.

q0

q2

q1

a

a,b

a,b

a

a

String to process: aba
Processed so far: ab
Next symbol: a

21 / 30

Languages and Automata
Some formal definitions

Determinization

Execution of NFAs
The subset construction

Stage 3: final state

The NFA could now be in q2 or q0. (It could have got to q2 in two
different ways, though we don’t need to keep track of this.)

q0

q2

q1

a

a,b

a,b

a

a

String to process: aba
Processed so far: aba

Since we’ve reached the end of the input string, and the set of
possible states includes the accepting state q0, we can say that the
string aba is accepted by this NFA.

22 / 30

Languages and Automata
Some formal definitions

Determinization

Execution of NFAs
The subset construction

The key insight

The process we’ve just described is a completely deterministic
process! Given any current set of ‘coloured’ states, and any
input symbol in Σ, there’s only one right answer to the
question: ‘What should the new set of coloured states be?’

What’s more, it’s a finite state process. A ’state’ is simply a
choice of ‘coloured’ states in the original NFA N.
If N has n states, there are 2n such choices.

This suggests how an NFA with n states can be converted
into an equivalent DFA with 2n states.

23 / 30

Languages and Automata
Some formal definitions

Determinization

Execution of NFAs
The subset construction

The subset construction: example

Our 3-state NFA gives rise to a DFA with 23 = 8 states. The states
of this DFA are subsets of {q0, q1, q2}.

q0

q2

q1

a

a,b

a,b

a

a ⇒

{q0,q1,
 q2}

{q0,q1} {q1,q2} {q0,q2}

{q0} {q1} {q2}

{}

a

b a,b

b

a,b

abb

ab

ba

a

a

The accepting states of this DFA are exactly those that contain an
accepting state of the original NFA.

24 / 30

Languages and Automata
Some formal definitions

Determinization

Execution of NFAs
The subset construction

The subset construction in general

Given an NFA N = (Q,∆, S ,F), we can define an equivalent DFA
M = (Q ′, δ′, s ′,F ′) (over the same alphabet Σ) like this:

Q ′ is 2Q , the set of all subsets of Q. (Also written P(Q).)

δ′(A, u) = {q′ ∈ Q | ∃q ∈ A. (q, u, q′) ∈ ∆}. (Set of all states
reachable via u from some state in A.)

s ′ = S .

F ′ = {A ⊆ Q | ∃q ∈ A. q ∈ F}.

It’s then not hard to prove mathematically that L(M) = L(N).
(See Kozen for details.)

This process is called determinization.

Coming up in lecture 6: Application of this process to efficient
string searching.

25 / 30

Languages and Automata
Some formal definitions

Determinization

Execution of NFAs
The subset construction

Summary

We’ve shown that for any NFA N, we can construct a DFA M
with the same associated language.

Since every DFA is also an NFA, the classes of languages
recognised by DFAs and by NFAs coincide — these are the
regular languages.

Often a language can be specified more concisely by an NFA
than by a DFA.

We can automatically convert an NFA to a DFA, at the risk of
an exponential blow-up in the number of states.

To determine whether a string x is accepted by an NFA, we
don’t actually need to construct the entire DFA. Instead, we
efficiently simulate the execution of the DFA on x on a
step-by-step basis. (This is called just-in-time simulation.)

26 / 30

Languages and Automata
Some formal definitions

Determinization

Execution of NFAs
The subset construction

End-of-lecture question 1

Let M be the DFA shown earlier:

0

1 1

0

even odd

Give a simple, concise description of the strings that are in L(M).

Answer: They’re the strings containing an even number of 0’s.

27 / 30

Languages and Automata
Some formal definitions

Determinization

Execution of NFAs
The subset construction

End-of-lecture question 1

Let M be the DFA shown earlier:

0

1 1

0

even odd

Give a simple, concise description of the strings that are in L(M).

Answer: They’re the strings containing an even number of 0’s.

27 / 30

Languages and Automata
Some formal definitions

Determinization

Execution of NFAs
The subset construction

End-of-lecture question 2

Which of these three languages do you think are regular?

L1 = {a, aa, ab, abbc}
L2 = {axb | x ∈ Σ∗}
L3 = {anbn | n ≥ 0}

If not regular, can you explain why not?

Answer: L1 is regular (easy to see that any finite set of strings is a
regular language). L2 is regular (easy to give a DFA). L3 is not
regular — for the reason, see Lecture 8.

28 / 30

Languages and Automata
Some formal definitions

Determinization

Execution of NFAs
The subset construction

End-of-lecture question 2

Which of these three languages do you think are regular?

L1 = {a, aa, ab, abbc}
L2 = {axb | x ∈ Σ∗}
L3 = {anbn | n ≥ 0}

If not regular, can you explain why not?

Answer: L1 is regular (easy to see that any finite set of strings is a
regular language). L2 is regular (easy to give a DFA). L3 is not
regular — for the reason, see Lecture 8.

28 / 30

Languages and Automata
Some formal definitions

Determinization

Execution of NFAs
The subset construction

End-of-lecture challenge question 3

Consider our first example NFA over {0, 1}:

q0 q1 q4 q5q2 q3

0,1

1 0,10,10,10,1 0,1 0,1 0,1

What is the number of states of the smallest DFA that recognises
the same language?

Answer given at end of Lecture 4.

29 / 30

Languages and Automata
Some formal definitions

Determinization

Execution of NFAs
The subset construction

Reference material

Kozen chapters 3, 5 and 6.

J & M section 2.2 (rather brief).

30 / 30

	Languages and Automata
	What is a `language'?
	Finite automata: recap

	Some formal definitions
	Finite automaton
	Regular language
	DFAs and NFAs

	Determinization
	Execution of NFAs
	The subset construction

