
Standard PCFGs
Lexicalized PCFGs

Parameter Estimation and Lexicalization for
PCFGs

Informatics 2A: Lecture 21

John Longley

5 November 2013

1 / 21

Standard PCFGs
Lexicalized PCFGs

1 Standard PCFGs
Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

2 Lexicalized PCFGs
Lexicalization
Head Lexicalization

Reading:

J&M 2nd edition, ch. 14.2–14.6,
NLTK Book, Chapter 8, final section on Weighted
Grammar.

2 / 21

Standard PCFGs
Lexicalized PCFGs

Clicker Question

S → NP VP (1.0) NPR → John (0.5)
NP → DET N (0.7) NPR → Mary (0.5)
NP → NPR (0.3) V → saw (0.4)
VP → V PP (0.7) V → loves (0.6)
VP → V NP (0.3) DET → a (1.0)
PP → Prep NP (1.0) N → cat (0.6)

N → saw (0.4)

What is the probability of the sentence John saw a saw?

1 0.02

2 0.00016

3 0.00504

4 0.0002

3 / 21

Standard PCFGs
Lexicalized PCFGs

Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Parameter Estimation

In a PCFG every rule is associated with a probability.
But where do these rule probabilities come from?

Use a large parsed corpus such as the Penn Treebank.

((S
(NP-SBJ (DT That) (JJ cold)
(, ,)
(JJ empty) (NN sky))

(VP (VBD was)
(ADJP-PRD (JJ full)
(PP (IN of)

(NP (NN fire)
(CC and)
(NN light)))))

(. .)))

S → NP-SBJ VP
VP → VBD ADJP-PRD
PP → IN NP
NP → NN CC NN
etc.

4 / 21

Standard PCFGs
Lexicalized PCFGs

Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Parameter Estimation

In a PCFG every rule is associated with a probability.
But where do these rule probabilities come from?

Use a large parsed corpus such as the Penn Treebank.

Obtain grammar rules by reading them off the trees.

Calculate number of times LHS → RHS occurs over number
of times LHS occurs.

P(α→ β|α) =
Count(α → β)∑
γ Count(α → γ)

=
Count(α → β)

Count(α)

5 / 21

Standard PCFGs
Lexicalized PCFGs

Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Parameter Estimation

Corpus of parsed sentences:

’S1: [S [NP grass] [VP grows]]’
’S2: [S [NP grass] [VP grows] [AP slowly]]’
’S3: [S [NP grass] [VP grows] [AP fast]]’
’S4: [S [NP bananas] [VP grow]]’

Compute PCFG probabilities:

r Rule α P(r |α)
r1 S → NP VP S 2/4
r2 S → NP VP AP S 2/4

r3 NP → grass NP 3/4
r4 NP → bananas NP 1/4
r5 VP → grows VP 3/4
r6 VP → grow VP 1/4
r7 AP → fast AP 1/2
r8 AP → slowly AP 1/2

6 / 21

Standard PCFGs
Lexicalized PCFGs

Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Parameter Estimation

Corpus of parsed sentences:

’S1: [S [NP grass] [VP grows]]’
’S2: [S [NP grass] [VP grows] [AP slowly]]’
’S3: [S [NP grass] [VP grows] [AP fast]]’
’S4: [S [NP bananas] [VP grow]]’

Compute PCFG probabilities:

r Rule α P(r |α)
r1 S → NP VP S 2/4
r2 S → NP VP AP S 2/4

r3 NP → grass NP 3/4
r4 NP → bananas NP 1/4
r5 VP → grows VP 3/4
r6 VP → grow VP 1/4
r7 AP → fast AP 1/2
r8 AP → slowly AP 1/2

6 / 21

Standard PCFGs
Lexicalized PCFGs

Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Parameter Estimation

Corpus of parsed sentences:

’S1: [S [NP grass] [VP grows]]’
’S2: [S [NP grass] [VP grows] [AP slowly]]’
’S3: [S [NP grass] [VP grows] [AP fast]]’
’S4: [S [NP bananas] [VP grow]]’

Compute PCFG probabilities:

r Rule α P(r |α)
r1 S → NP VP S 2/4
r2 S → NP VP AP S 2/4

r3 NP → grass NP 3/4
r4 NP → bananas NP 1/4
r5 VP → grows VP 3/4
r6 VP → grow VP 1/4
r7 AP → fast AP 1/2
r8 AP → slowly AP 1/2

6 / 21

Standard PCFGs
Lexicalized PCFGs

Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Parameter Estimation

Corpus of parsed sentences:

’S1: [S [NP grass] [VP grows]]’
’S2: [S [NP grass] [VP grows] [AP slowly]]’
’S3: [S [NP grass] [VP grows] [AP fast]]’
’S4: [S [NP bananas] [VP grow]]’

Compute PCFG probabilities:

r Rule α P(r |α)
r1 S → NP VP S 2/4
r2 S → NP VP AP S 2/4
r3 NP → grass NP 3/4

r4 NP → bananas NP 1/4
r5 VP → grows VP 3/4
r6 VP → grow VP 1/4
r7 AP → fast AP 1/2
r8 AP → slowly AP 1/2

6 / 21

Standard PCFGs
Lexicalized PCFGs

Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Parameter Estimation

Corpus of parsed sentences:

’S1: [S [NP grass] [VP grows]]’
’S2: [S [NP grass] [VP grows] [AP slowly]]’
’S3: [S [NP grass] [VP grows] [AP fast]]’
’S4: [S [NP bananas] [VP grow]]’

Compute PCFG probabilities:

r Rule α P(r |α)
r1 S → NP VP S 2/4
r2 S → NP VP AP S 2/4
r3 NP → grass NP 3/4
r4 NP → bananas NP 1/4

r5 VP → grows VP 3/4
r6 VP → grow VP 1/4
r7 AP → fast AP 1/2
r8 AP → slowly AP 1/2

6 / 21

Standard PCFGs
Lexicalized PCFGs

Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Parameter Estimation

Corpus of parsed sentences:

’S1: [S [NP grass] [VP grows]]’
’S2: [S [NP grass] [VP grows] [AP slowly]]’
’S3: [S [NP grass] [VP grows] [AP fast]]’
’S4: [S [NP bananas] [VP grow]]’

Compute PCFG probabilities:

r Rule α P(r |α)
r1 S → NP VP S 2/4
r2 S → NP VP AP S 2/4
r3 NP → grass NP 3/4
r4 NP → bananas NP 1/4
r5 VP → grows VP 3/4

r6 VP → grow VP 1/4
r7 AP → fast AP 1/2
r8 AP → slowly AP 1/2

6 / 21

Standard PCFGs
Lexicalized PCFGs

Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Parameter Estimation

Corpus of parsed sentences:

’S1: [S [NP grass] [VP grows]]’
’S2: [S [NP grass] [VP grows] [AP slowly]]’
’S3: [S [NP grass] [VP grows] [AP fast]]’
’S4: [S [NP bananas] [VP grow]]’

Compute PCFG probabilities:

r Rule α P(r |α)
r1 S → NP VP S 2/4
r2 S → NP VP AP S 2/4
r3 NP → grass NP 3/4
r4 NP → bananas NP 1/4
r5 VP → grows VP 3/4
r6 VP → grow VP 1/4

r7 AP → fast AP 1/2
r8 AP → slowly AP 1/2

6 / 21

Standard PCFGs
Lexicalized PCFGs

Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Parameter Estimation

Corpus of parsed sentences:

’S1: [S [NP grass] [VP grows]]’
’S2: [S [NP grass] [VP grows] [AP slowly]]’
’S3: [S [NP grass] [VP grows] [AP fast]]’
’S4: [S [NP bananas] [VP grow]]’

Compute PCFG probabilities:

r Rule α P(r |α)
r1 S → NP VP S 2/4
r2 S → NP VP AP S 2/4
r3 NP → grass NP 3/4
r4 NP → bananas NP 1/4
r5 VP → grows VP 3/4
r6 VP → grow VP 1/4
r7 AP → fast AP 1/2

r8 AP → slowly AP 1/2

6 / 21

Standard PCFGs
Lexicalized PCFGs

Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Parameter Estimation

Corpus of parsed sentences:

’S1: [S [NP grass] [VP grows]]’
’S2: [S [NP grass] [VP grows] [AP slowly]]’
’S3: [S [NP grass] [VP grows] [AP fast]]’
’S4: [S [NP bananas] [VP grow]]’

Compute PCFG probabilities:

r Rule α P(r |α)
r1 S → NP VP S 2/4
r2 S → NP VP AP S 2/4
r3 NP → grass NP 3/4
r4 NP → bananas NP 1/4
r5 VP → grows VP 3/4
r6 VP → grow VP 1/4
r7 AP → fast AP 1/2
r8 AP → slowly AP 1/2

6 / 21

Standard PCFGs
Lexicalized PCFGs

Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Parameter Estimation

With these parameters (rule probabilities), we can now compute
the probabilities of the four sentences S1–S4:

P(S1) = P(r1|S)P(r3|NP)P(r5|VP)
= 2/4 · 3/4 · 3/4 = 0.28125

P(S2) = P(r2|S)P(r3|NP)P(r5|VP)P(r7|AP)
= 2/4 · 3/4 · 3/4 · 1/2 = 0.140625

P(S3) = P(r2|S)P(r3|NP)P(r5|VP)P(r7|AP)
= 2/4 · 3/4 · 3/4 · 1/2 = 0.140625

P(S4) = P(r1|S)P(r4|NP)P(r6|VP)
= 2/4 · 1/4 · 1/4 = 0.03125

7 / 21

Standard PCFGs
Lexicalized PCFGs

Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Parameter Estimation

What if we don’t have a treebank, but we do have an unparsed
corpus and (non-probabilistic) parser?

1 Take a CFG and set all rules to have equal probability.

2 Parse the (flat) corpus with the CFG.

3 Adjust the probabilities.

4 Repeat steps two and three until probabilities converge.

This is the inside-outside algorithm (Baker, 1979), a type of
Expectation Maximisation algorithm. It can also be used to induce
a grammar, but only with limited success.

8 / 21

Standard PCFGs
Lexicalized PCFGs

Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Problems with Standard PCFGs

While standard PCFGs are already useful for some purposes, they
can produce poor result when used for disambiguation.

Why is that?

1 They assume the rule choices are independent of one another.

2 They ignore lexical information until the very end of the
analysis, when word classes are rewritten to word tokens.

How can this lead to bad choices among possible parses?

9 / 21

Standard PCFGs
Lexicalized PCFGs

Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Problem 1: Assuming Independence

By definition, a CFG assumes that the expansion of non-terminals
is completely independent. It doesn’t matter:

where a non-terminal is in the analysis;

what else is (or isn’t) in the analysis.

The same assumption holds for standard PCFGs: The probability of
a rule is the same, no matter

where it is applied in the analysis;

what else is (or isn’t) in the analysis.

But this assumption is too simple!

10 / 21

Standard PCFGs
Lexicalized PCFGs

Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Problem 1: Assuming Independence

S → NP VP NP → PRO
VP → VBD NP NP → DT NOM

The above rules assign the same probability to both these trees,
because they use the same re-write rules, and probability
calculations do not depend on where rules are used.

S

NP VP

VBD

wrote

NP

PRO

them

S

NP

PRO

They

VP

VBD

wrote

NP

11 / 21

Standard PCFGs
Lexicalized PCFGs

Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Problem 1: Assuming independence

But in speech corpora, 91% of 31021 subject NPs are pronouns:

(1) a. She’s able to take her baby to work with her.
b. My wife worked until we had a family.

while only 34% of 7489 object NPs are pronouns:

(2) a. Some laws absolutely prohibit it.
b. It wasn’t clear how NL and Mr. Simmons would

respond if Georgia Gulf spurns them again.

So the probability of NP → PRO should depend on where in the
analysis it applies (e.g., subject or object position).

12 / 21

Standard PCFGs
Lexicalized PCFGs

Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Addressing the independence problem

One way of introducing greater sensitivity into PCFGs is via parent
annotation: subdivide (all or some) non-terminal categories
according to the non-terminal that appears as the node’s
immediate parent. E.g. NP subdivides into NPS , NPVP , . . .

S → NPS VPS NPS → PRO
VPS → VBDVP NPVP NPVP → PRO, etc.

S

NPS VPS

VBD

wrote

NPVP

PRO

them

S

NPS

PRO

They

VPS

VBD

wrote

NPVP

13 / 21

Standard PCFGs
Lexicalized PCFGs

Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Addressing the independence problem

Node-splitting via parent annotation allows different probabilities
to be assigned e.g. to the rules

NPS → PRO, NPVP → PRO

However, too much node-splitting can mean not enough data to
obtain realistic rule probabilities, unless we have an enormous
training corpus.

There are even algorithms that try to identify the optimal amount
of node-splitting for a given training set!

14 / 21

Standard PCFGs
Lexicalized PCFGs

Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Problem 2: Ignoring Lexical Information

S → NP VP N → sack | bin | · · ·
NP → NNS | NN NNS → students
VP → VBD NP | VBD NP PP V → dumped | spotted
PP → P NP DT → a | the
NP → DT NN P → in

Consider the sentences:

(3) a. The students dumped the sack in the bin.
b. The students spotted the flaw in the plan.

Because rules for rewriting non-terminals ignore word tokens until
the very end, let’s consider these simply as strings of POS tags:

(4) DT NNS VBD DT NN IN DT NN

15 / 21

Standard PCFGs
Lexicalized PCFGs

Parameter Estimation
Problem 1: Assuming Independence
Problem 2: Ignoring Lexical Information

Problem 2: Ignoring Lexical Information

S

NP

DT NNS

VP

VBD NP

DT NN

PP

IN NP

DT NN

S

NP

DT NNS

VP

VBD NP

NP

DT NN

PP

IN NP

DT NN

Which do we want for The students dumped the sack in the bin?
Which for The students spotted the flaw in the plan?

The most appropriate analysis depends in part on the actual words
occurring. The word dumped, implying motion, is more likely to
have an associated prepositional phrase than spotted.

16 / 21

Standard PCFGs
Lexicalized PCFGs

Lexicalization
Head Lexicalization

Lexicalized PCFGs

A PCFG can be lexicalised by associating a word with every
non-terminal in the grammar.

It is head-lexicalised if the word is the head of the constituent
described by the non-terminal.

Each non-terminal has a head that determines syntactic properties
of phrase (e.g., which other phrases it can combine with).

Example

Noun Phrase (NP): Noun
Adjective Phrase (AP): Adjective
Verb Phrase (VP): Verb
Prepositional Phrase (PP): Preposition

17 / 21

Standard PCFGs
Lexicalized PCFGs

Lexicalization
Head Lexicalization

Lexicalization

We can lexicalize a PCFG by annotating each non-terminal with its
head word, starting with the terminals – replacing

VP → VBD NP PP VP → VBD NP
NP → DT NN NP → NP PP
NP → NNS PP → P NP

with rules such as

VP(dumped) → V(dumped) NP(sack) PP(in)
VP(spotted) → V(spotted) NP(flaw) PP(in)
VP(dumped) → V(dumped) NP(sack)
VP(spotted) → V(spotted) NP(flaw)
NP(flaw) → DT(the) NN(flaw)
PP(in) → P(in) NP(bin)
PP(in) → P(in) NP(plan)

18 / 21

Standard PCFGs
Lexicalized PCFGs

Lexicalization
Head Lexicalization

Head Lexicalization

In principle, each of these rules can now have its own probability.
But that would mean a ridiculous expansion in the set of grammar
rules, with no parsed corpus large enough to estimate their
probabilities accurately.

Instead we just lexicalize the head of phrase:

VP(dumped) → V(dumped) NP PP
VP(spotted) → V(spotted) NP PP
VP(dumped) → V(dumped) NP
VP(spotted) → V(spotted) NP
NP(flaw) → DT NN(flaw)
PP(in) → P(in) NP

Such grammars are called lexicalized PCFGs or, alternatively,
probabilistic lexicalized CFGs.

19 / 21

Standard PCFGs
Lexicalized PCFGs

Lexicalization
Head Lexicalization

Head Lexicalization

For lexicalized PCFGs, rule probabilities can be reasonably
estimated from a corpus.

In the simplest version, the lexicalized rules are supplemented by
head selection rules, whose probabilities can also be estimated
from a corpus:

VP → VP(dumped)
VP → VP(spotted)
NP → NP(sack)
NP → NP(flaw)
PP → PP(in)

20 / 21

Standard PCFGs
Lexicalized PCFGs

Lexicalization
Head Lexicalization

Combining approaches

We can also combine the ideas of head lexicalization with parent
annotation, leading to rules like

NPVP(dumped) → NP(sack)VP(dumped)

NPVP(spotted) → NP(flaw)VP(spotted)

PPVP(dumped) → PP(in)VP(dumped)

The probabilities for such rules can be used to take account of
commonly occurring word combinations, e.g. of verb-object or
verb-preposition. These include long-distance correlations invisible
to N-gram technology.

Grammars with these doubly-lexicalized rules are still feasible,
given enough training data. This is roughly the idea behind the
Collins parser (not covered here).

21 / 21

	Standard PCFGs
	Parameter Estimation
	Problem 1: Assuming Independence
	Problem 2: Ignoring Lexical Information

	Lexicalized PCFGs
	Lexicalization
	Head Lexicalization

