Phrase Structure and Parsing as Search

Informatics 2A: Lecture 17

John Longley

School of Informatics
University of Edinburgh

25 October 2013

1/54

@ Phrase Structure
@ Heads and Phrases
@ Desirable Properties of a Grammar
@ A Fragment of English

@ Grammars and Parsing
@ Recursion
@ Structural Ambiguity
@ Recursive Descent Parsing
@ Shift-Reduce Parsing

2/54

Heads and Phrases
Desirable Properties of a Grammar
A Fragment of English

Phrase Structure

Heads and Phrases

Noun (N): Noun Phrase (NP)

Adjective (A): Adjective Phrase (AP)

Verb (V): Verb Phrase (VP)

Preposition (P): Prepositional Phrase (PP)

@ So far we have looked at terminals (words or POS tags).

o Today, we'll look at non-terminals, which correspond to
phrases.

@ The class that a word belongs to is closely linked to the name
of the phrase it customarily appears in

@ In a X-phrase (eg NP), the key occurrence of X (eg N) is
called the head.

@ In English, the head tends to appear in the middle of a phrase.

3/54

Heads and Phrases
Desirable Properties of a Grammar
A Fragment of English

Phrase Structure

Heads and Phrases

English NPs are commonly of the form:

(Det) Adj* Noun (PP | RelClause)*
NP: the angry duck that tried to bite me, head: duck.

VPs are commonly of the form:

(Aux) Adv* Verb Arg* Adjunct*

Arg — NP | PP

Adjunct — PP | AdvP | ...

VP: usually eats artichokes for dinner, head: eat.

In Japanese, Korean, Hindi, Urdu, and other head-final languages,
the head is at the end of its associated phrase.

In Irish, Welsh, Scots Gaelic and other head-initial languages, the
head is at the beginning of its associated phrase.

4/54

Phrase Structure Heads and Phrases
Desirable Properties of a Grammar

A Fragment of English

Desirable Properties of a Grammar

Chomsky specified two properties that make a grammar
“interesting and satisfying”:
@ It should be a finite specification of the strings of the
language, rather than a list of its sentences.
@ It should be revealing, in allowing strings to be associated
with meaning (semantics) in a systematic way.

We can add another desirable property:

@ It should capture structural and distributional properties of
the language. (E.g. where heads of phrases are located; how a
sentence transforms into a question; which phrases can float
around the sentence.)

5/54

Heads and Phrases
Desirable Properties of a Grammar
A Fragment of English

Phrase Structure

Desirable Properties of a Grammar

e Context-free grammars (CFGs) provide a pretty good
approximation.

@ Some features of NLs are more easily captured using mildly
context-sensitive grammars, as well see later in the course.

@ There are also more modern grammar formalisms that better
capture structural and distributional properties of human
languages. (E.g. combinatory categorial grammar.)

@ But LL(1) grammars and the like definitely aren’t enough for
NLs. Even if we could make a NL grammar LL(1), we
wouldn't want to: this would artificially suppress ambiguities,
and would often mutilate the ‘natural’ structure of sentences.

6/54

Heads and Phrases
Desirable Properties of a Grammar
A Fragment of English

Phrase Structure

A Tiny Fragment of English

Let's say we want to capture in a grammar the structural and
distributional properties that give rise to sentences like:

A duck walked in the park. NP,V,PP
The man walked with a duck. NP V,PP
You made a duck. Pro,V,NP
You made her duck. ? Pro,V,NP
A man with a telescope saw you. NP,PP,V,Pro
A man saw you with a telescope. NP,V,Pro,PP
You saw a man with a telescope. Pro,V,NP,PP

We want to write grammatical rules that generate these phrase
structures, and lexical rules that generate the words appearing in
them.

7/54

Heads and Phrases
Desirable Properties of a Grammar
A Fragment of English

Phrase Structure

Grammar for the Tiny Fragment of English

Grammar G1 generates the sentences on the previous slide:

Grammatical rules Lexical rules

S — NP VP Det — a | the | her (determiners)

NP — Det N N — man | park | duck | telescope (nouns)
NP — Det N PP Pro — you (pronoun)

NP — Pro V — saw | walked | made (verbs)

VP — V NP PP Prep — in | with | for (prepositions)

VP — V NP

VP — V

PP — Prep NP

Does G1 produce a finite or an infinite number of sentences?

8/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursion

Recursion in a grammar makes it possible to generate an infinite
number of sentences.

In direct recursion, a non-terminal on the LHS of a rule also
appears on its RHS. The following rules add direct recursion to G1:

VP — VP Conj VP
Conj — and | or

In indirect recursion, some non-terminal can be expanded (via
several steps) to a sequence of symbols containing that
non-terminal:

NP — Det N PP
PP — Prep NP

9/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Structural Ambiguity

You saw a man with a telescope. J
S
NP VP
\
Pro
You NP PP
‘ /\
saw Det N prep NP

| | | TN
a man | oh Dot N

a telescope

10/54

Grammars and Parsing

Structural Ambiguity

Recursion

Structural Ambiguity
Recursive Descent Parsing
Shift-Reduce Parsing

You saw a man with a telescope.

S
NP VP
\
Pro
| V NP
You
saw
Det N
\ \
man

Prep NP

/\
Det N
\ \

a telescope

with

11/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Structural Ambiguity

You saw a man with a telescope. J

NP VP |
| You NP
Pro ‘
‘ saw
You
\% NP PP Det N PP
\ o P ! \
saw ‘et | Prep NP a man Prep NP
a man ‘ /\ ‘ /\
with Det N with Det N
| | \
a telescope a telescope

This illustrates attachment ambiguity: the PP can be a part of the
VP or of the NP. Note that there's no POS ambiguity here.

12/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Structural Ambiguity

Grammar G1 only gives us one analysis of you made her duck.

S
NP VP
|
Pro v NP

\ \ N
You made Det N

\ \
her duck

There is another, ditransitive (i.e., two-object) analysis of this

sentence — one that underlies the pair:

What did you make for her?
You made her duck.

13 /54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Structural Ambiguity

For this alternative, G1 also needs rules like:

NP — N
VP — V NP NP
Pro — her
S S
NP VP NP VP
Pro vV NP Pro " NP NP
o~ S
You made Det N U made Pro N
her duck |

her duck

In this case, the structural ambiguity is rooted in POS ambiguity.
14 /54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Structural Ambiguity

There is a third analysis as well, one that underlies the pair:

What did you make her do?
You made her duck. (move head or body quickly downwards)

Here, the small clause (her duck) is the direct object of a verb.

Similar small clauses are possible with verbs like see, hear and
notice, but not ask, want, persuade, etc.

G1 needs a rule that requires accusative case-marking on the
subject of a small clause and no tense on its verb.:

VP — V S1
S1 — NP(acc) VP(untensed)
NP(acc) — her | him | them

15/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Structural Ambiguity

Now we have three analyses for you made her duck:

S S S
NP VP NP VP NP VP
Pro \% NP Pro V. NP NP Pro \Y S
PN
Det N Pro N NP(acc) V‘P
\Y,
You made her duck You made her duck You made her duck

How can we compute these analyses automatically?

16 /54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Parsing Algorithms

A parser is an algorithm that computes a structure for an input
string given a grammar. All parsers have two fundamental
properties:

@ Directionality: the sequence in which the structures are
constructed (e.g., top-down or bottom-up).

@ Search strategy: the order in which the search space of
possible analyses is explored (e.g., depth-first, breadth-first).

For instance, LL(1) parsing is top-down and depth-first.

17 /54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Coming up: A zoo of parsing algorithms

As we've noted, LL(1) isn't good enough for NL. We'll be looking
at other parsing algorithms that work for more general CFGs.

@ Recursive descent parsers (top-down). Simple and very
general, but inefficient. Other problems

@ Shift-reduce parsers (bottom-up).

@ The Cocke-Younger-Kasami algorithm (bottom up). Works for
any CFG with reasonable efficiency.

@ The Earley algorithm (top down). Chart parsing enhanced
with prediction.

18/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

A recursive descent parser treats a grammar as a specification of
how to break down a top-level goal into subgoals. Therefore:

@ Parser searches through the trees licensed by the grammar to
find the one that has the required sentence along its yield.

o Directionality = top-down: It starts from the start symbol of
the grammar, and works its way down to the terminals.

@ Search strategy = depth-first: It expands a given terminal as
far as possible before proceeding to the next one.

19/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Algorithm Sketch: Recursive Descent Parsing

@ The top-level goal is to derive the start symbol (S).
@ Choose a grammatical rule with S as its LHS
(e.g, S — NP VP), and replace S with the RHS of the rule
(the subgoals; e.g., NP and VP).
© Choose a rule with the leftmost subgoal as its LHS (e.g.,
NP — Det N). Replace the subgoal with the RHS of the rule.
© Whenever you reach a lexical rule (e.g., Det — the), match
its RHS against the current position in the input string.
e If it matches, move on to next position in the input.
o If it doesn't, try next lexical rule with the same LHS.
e If no rules with same LHS, backtrack to most recent choice of
grammatical rule and choose another rule with the same LHS.
e If no more grammatical rules, back up to the previous subgoal.
© lterate until the whole input string is consumed, or you fail to
match one of the positions in the input. Backtrack on failure.

20/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

21/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

NP vp

22/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

Det N PP

23 /54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

24 /54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

Det N PP

25 /54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

Det N pp

man

26 /54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

Det N PP

park

27 /54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

Det PP

28 /54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

pet N PP

P NP
the dog
the dog

29/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

pet N PP

30/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

Det N

31/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

32/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

33/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

Det N pp

34/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

Det N PP

35/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

Det N PP

36 /54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

Det N v NP PP
/\
Det N PP
D£:§ii\~;P

37/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

Det N \4 NP PP
/\
Det N PP
~—
Det N PP
™.

38/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

Det N

39/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

Det N

40/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Recursive Descent Parsing

Det N P NP
Det N

41/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

A Shift-Reduce parser tries to find sequences of words and phrases
that correspond to the righthand side of a grammar production
and replace them with the lefthand side:

@ Directionality = bottom-up: starts with the words of the
input and tries to build trees from the words up.

@ Search strategy = breadth-first: starts with the words, then
applies rules with matching right hand sides, and so on until
the whole sentence is reduced to an S.

42/54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Algorithm Sketch: Shift-Reduce Parsing

Until the words in the sentences are substituted with S:

@ Scan through the input until we recognise something that
corresponds to the RHS of one of the production rules (shift)

@ Apply a production rule in reverse; i.e., replace the RHS of the
rule which appears in the sentential form with the LHS of the
rule (reduce)

A shift-reduce parser implemented using a stack:
© start with an empty stack
@ a shift action pushes the current input symbol onto the stack

© a reduce action replaces n items with a single item

43 /54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Stack Remaining

44 /54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Stack Remaining
Det dog saw a man 1in the park
my

45 /54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Stack Remaining
Det N saw a man in the park
my dog

46 /54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Stack Remaining
NP saw a man in the park

Det N

my dog

47 /54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Stack Remaining
NP \% NP in the park
PN | PN
Det N saw Det N
| I I I
my dog a man

48 /54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Stack Remaining
NP v NP PP

PN I N PN
Det N saw Det N P NP

| I I I N
my dog a man in Det N

I I
the park

49 /54

Recursion
Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Stack

Det

my

N saw NP PP
I N
dog Det N P NP
I N N
a man in Det N
I I
the park

50 /54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

my dog saw NP PP
N PN
Det N P NP
I I N
a man in Det N

the park

51/54

Recursion
Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Shift-Reduce Parsing

Stack

my dog saw NP PP
N PN
Det N P NP
I I N
a man in Det N
I I
the park

52 /54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Try it out Yourselves!

Recursive Decent Parser
>>> from nltk.app import rdparser
>>> rdparser()

Shift-Reduce Parser

>>> from nltk.app import srparser
>>> srparser()

53 /54

Recursion

Structural Ambiguity
Grammars and Parsing Recursive Descent Parsing

Shift-Reduce Parsing

Summary

We use CFGs to represent NL grammars
Grammars need recursion to produce infinite sentences
Most NL grammars have structural ambiguity

°
°
°
@ A parser computes structure for an input automatically
@ Recursive descent and shift-reduce parsing

°

We'll examine more parsers in Lectures 17-22

Reading: J&M (2nd edition) Chapter 12 (intro — section
12.3), Chapter 13 (intro — section 13.3)
Next lecture: The CYK algorithm

54 /54

	Phrase Structure
	Heads and Phrases
	Desirable Properties of a Grammar
	A Fragment of English

	Grammars and Parsing
	Recursion
	Structural Ambiguity
	Recursive Descent Parsing
	Shift-Reduce Parsing

