Automatic generation of LL(1) parsers

Informatics 2A: Lecture 11

Alex Simpson
School of Informatics
University of Edinburgh
als@inf.ed.ac.uk
10 October, 2013

Generating parse tables

We've seen that if a grammar \mathcal{G} happens to be $\operatorname{LL}(1)$ - i.e. if it admits a parse table - then efficient, deterministic, predictive parsing is possible with the help of a stack.

What's more, if \mathcal{G} is $\operatorname{LL}(1), \mathcal{G}$ is automatically unambiguous.
But how do we tell whether a grammar is $\operatorname{LL}(1)$? And if it is, how can we construct a parse table for it?

For very small grammars, might be able to answer these questions by eye inspection. But for realistic grammars, a systematic method is needed.

In this lecture, we give an algorithmic procedure for answering both questions.

The overall picture

Previous lecture: the $\mathrm{LL}(1)$ parsing algorithm, which works on a parse table and a particular input string.

This lecture: algorithm for getting from a grammar \mathcal{G} to a parse table. The algorithm will succeed if \mathcal{G} is $\operatorname{LL}(1)$, or fail if it isn't. As in previous lecture, assume \mathcal{G} has no 'useless nonterminals'.
Next lecture: ways of getting from a grammar to an equivalent $\mathrm{LL}(1)$ grammar. (Not always possible, but work quite often.)

First and Follow sets

Two steps to construct a parse table for a given grammar:
(1) For each nonterminal X, compute two sets called $\operatorname{First}(X)$ and Follow (X), defined as follows:

- First (X) is the set of all terminals that can appear at the start of a phrase derived from X.
[Convention: if ϵ can be derived from X, also include the special symbol ϵ in $\operatorname{First}(X)$.]
- Follow (X) is the set of all terminals that can appear immediately after X in some sentential form derived from the start symbol S.
[Convention: if X can appear at the end of some such sentential form, also include the special symbol $\$$ in Follow (X).]
(2) Use these First and Follow sets to fill out the parse table.

The first step is somewhat tricky. The second is easier.

Two non-clicker questions

- First (X) is the set of all terminals that can appear at the start of a phrase derived from X.
[Convention: if ϵ can be derived from X, also include the special symbol ϵ in $\operatorname{First}(X)$.]
Recall our $\operatorname{LL}(1)$ grammar for well-matched bracket sequences:

$$
S \rightarrow \epsilon \mid T S \quad T \rightarrow(S)
$$

Try to work out each of the two sets below.

$$
\text { First }(T) \quad \text { First }(S)
$$

(1) $\{\boldsymbol{\epsilon}\}$
© \{ (\}

- $\{(, \epsilon\}$
- $\{(),, \epsilon\}$

Two more non-clicker questions

- Follow (X) is the set of all terminals that can appear immediately after X in some sentential form derived from the start symbol S.
[Convention: if X can appear at the end of some such sentential form, also include $\$$ in Follow (X).]
Again consider the same $\operatorname{LL}(1)$ grammar:

$$
S \rightarrow \epsilon \mid T S \quad T \rightarrow(S)
$$

Try to work out each of the two sets below.
Follow(S)
Follow (T)
(1) $\{\$\}$
(2) $)\}$
(3) $), \$\}$
(0) $\{(),, \$\}$

First and Follow sets: an example

Look again at our grammar for well-matched bracket sequences:

$$
S \rightarrow \epsilon \mid T S \quad T \rightarrow(S)
$$

By inspection, we can see that

$$
\begin{array}{rll}
\text { First }(S) & =\{(, \boldsymbol{\epsilon}\} & \text { because an } S \text { can begin with (or be empty } \\
\text { First }(T) & =\{(\} & \text { because a } T \text { must begin with (}
\end{array} \begin{array}{ll}
\text { Follow }(S) & =\{), \$\}
\end{array} \begin{aligned}
& \text { because within a complete phrase, an } S \\
& \text { can be followed by) or appear at the end } \\
& \text { Follow }(T)
\end{aligned}=\{(,), \$\} \begin{aligned}
& \text { because a } T \text { can be followed by }(\text { or }) \\
& \text { or appear at the end }
\end{aligned}
$$

Later we'll give a systematic method for computing these sets.
Further convention: take $\operatorname{First}(a)=\{a\}$ for each terminal a.

Filling out the parse table

Once we've got these First and Follow sets, we can fill out the parse table as follows.
For each production $X \rightarrow \alpha$ of \mathcal{G} in turn:

- For each terminal a, if α 'can begin with' a, insert $X \rightarrow \alpha$ in row X, column a.
- If α 'can be empty', then for each $b \in$ Follow (X) (where b may be $\$$), insert $X \rightarrow \alpha$ in row X, column b.
If doing this leads to clashes (i.e. two productions fighting for the same table entry) then conclude that the grammar is not $\operatorname{LL}(1)$.

To explain the phrases in blue, suppose $\alpha=x_{1} \ldots x_{n}$, where the x_{i} may be terminals or nonterminals.

- α can be empty means $\boldsymbol{\epsilon} \in \operatorname{First}\left(x_{i}\right)$ for every x_{i}.
- α can begin with a means that, for some i, $\epsilon \in \operatorname{First}\left(x_{1}\right) \cap \ldots \cap \operatorname{First}\left(x_{i-1}\right)$, and $a \in \operatorname{First}\left(x_{i}\right)$.

Comments on filling out the parse table

- The case $\alpha=\epsilon$ is counted as a case in which α can be empty.
(This case is implicit in the last slide since $\alpha=\epsilon$ counts as an instance of $\alpha=x_{1} \ldots x_{n}$ by taking $n=0$, whence the condition " $\boldsymbol{\epsilon} \in \operatorname{First}\left(x_{i}\right)$ for every x_{i} " is vacuously true since there are no x_{i}.)
- Similarly, we count $\alpha=x_{1} \ldots x_{n}$ with $a \in \operatorname{First}\left(x_{1}\right)$ as one case in which α can begin with a.
(Again this is implicit in the last slide. The condition $\boldsymbol{\epsilon} \in \operatorname{First}\left(x_{1}\right) \cap \ldots \cap \operatorname{First}\left(x_{i-1}\right)$ means that $\boldsymbol{\epsilon}$ is contained in all the sets First $\left(x_{1}\right)$, First $\left(x_{2}\right)$ up to First $\left(x_{i-1}\right)$. In the case that $i=1$, we consider the sequence x_{1}, \ldots, x_{i-1} as being empty. Thus the condition " $\epsilon \in \operatorname{First}\left(x_{1}\right) \cap \ldots \cap \operatorname{First}\left(x_{i-1}\right)$ " is again vacuously true.)

Filling out the parse table: example

$$
\begin{array}{rlrl}
S & \rightarrow \epsilon \mid T S & T \rightarrow(S) \\
\operatorname{First}(S) & =\{(, \epsilon\} & \text { Follow }(S) & =\{), \$\} \\
\operatorname{First}(T) & =\{(\} & \text { Follow }(T)=\{(,), \$\}
\end{array}
$$

Use this information to fill out the parse table:

- (S) can begin with (, so insert $T \rightarrow(S)$ in entry for $(, T$.
- TS can begin with (, so insert $S \rightarrow T S$ in entry for $(, S$.
- ϵ can be empty, and Follow $(S)=\{), \$\}$, so insert $S \rightarrow \epsilon$ in entries for), S and $\$, S$.
This gives the parse table we had in the previous lecture:

		$($	$)$
S	$S \rightarrow T S$	$S \rightarrow \epsilon$	$S \rightarrow \epsilon$
T	$T \rightarrow(S)$		

Intermezzo: true or false?

(1) Every $\mathrm{LL}(1)$ grammar is context free.
(2) Every context-free language can be presented using an $\operatorname{LL}(1)$ grammar.
(3) Every regular language can be presented using an $\operatorname{LL}(1)$ grammar.
(9) Every $\mathrm{LL}(1)$ grammar is unambiguous.
(5) Languages defined by $\operatorname{LL}(1)$ grammars can be efficiently parsed.

Calculating First and Follow sets: preliminary stage

To complete the story, we'd like an algorithm for calculating First and Follow sets.

Easy first step: compute the set E of nonterminals that 'can be ϵ ':
(1) Start by adding X to E whenever $X \rightarrow \epsilon$ is a production of \mathcal{G}.
(2) If $X \rightarrow Y_{1} \ldots Y_{m}$ is a production and Y_{1}, \ldots, Y_{m} are already in E, add X to E.
(3) Repeat step 2 until E stabilizes.

Example: for our grammar of well-matched bracket sequences, we have $E=\{S\}$.

Calculating First sets: the details

(1) Set $\operatorname{First}(a)=\{a\}$ for each $a \in \Sigma$. For each nonterminal X, initially set $\operatorname{First}(X)$ to $\{\epsilon\}$ if $X \in E$, or \emptyset otherwise.
(2) For each production $X \rightarrow x_{1} \ldots x_{n}$ and each $i \leq n$, if $x_{1}, \ldots, x_{i-1} \in E$ and $a \in \operatorname{First}\left(x_{i}\right)$, add a to $\operatorname{First}(X)$.
(3) Repeat step 2 until all First sets stabilize.

Example:

- Start with $\operatorname{First}(S)=\{\boldsymbol{\epsilon}\}, \operatorname{First}(T)=\emptyset$, etc.
- Consider $T \rightarrow(S)$ with $i=1$: add (to $\operatorname{First}(T)$.
- Now consider $S \rightarrow T S$ with $i=1$: add (to First(S).
- That's all.

Calculating Follow sets: the details

(1) Initially set Follow $(S)=\{\$\}$ for the start symbol S, and Follow $(X)=\emptyset$ for all other nonterminals X.
(2) For each production $X \rightarrow \alpha$, each splitting of α as $\beta Y_{x_{1}} \ldots x_{n}$ where $n \geq 1$, and each i with $x_{1}, \ldots, x_{i-1} \in E$, add all of First $\left(x_{i}\right)$ (excluding $\boldsymbol{\epsilon}$) to Follow (Y).
(3) For each production $X \rightarrow \alpha$ and each splitting of α as βY or $\beta Y x_{1} \ldots x_{n}$ with $x_{1}, \ldots, x_{n} \in E$, add all of Follow (X) to Follow (Y).
(4) Repeat step 3 until all Follow sets stabilize.

Example:

- Start with Follow $(S)=\{\$\}$, Follow $(T)=\emptyset$.
- Apply step 2 to $T \rightarrow(S)$ with $i=1$: add) to Follow(S).
- Apply step 2 to $S \rightarrow T S$ with $i=1$: add (to Follow (T).
- Apply step 3 to $S \rightarrow T S$ with $n=1$: add) and $\$$ to $\operatorname{Follow(~} T$).
- That's all.

Parser generators

$\mathrm{LL}(1)$ is representative of a bunch of classes of CFGs that are efficiently parseable. E.g. $\operatorname{LL}(1) \subset \operatorname{LALR} \subset \operatorname{LR}(1)$. These involve various tradeoffs of expressive power vs. efficiency/simplicity.

For such languages, a parser can be generated automatically from a suitable grammar. (E.g. for $\operatorname{LL}(1)$, just need parse table plus fixed 'driver' for the parsing algorithm.)

So we don't need to write parsers ourselves - just the grammar! (E.g. one can basically define the syntax of Java in about 7 pages of context-free rules.)

This is the principle behind parser generators like yacc ('yet another compiler compiler') and java-cup.

Reading

- Dragon book: Aho, Sethi and Ullman, Compilers: Principles, Techniques and Tools, Section 4.4.
- Tiger book: Andrew Appel, Modern Compiler Implementation in (C|Java | ML).
- Turtle book: Aho and Ullman, Foundations of Computer Science.
- Some relevant lecture notes and a tutorial sheet from previous years are available via the Course Schedule webpage.

