
LL(1) grammars and parse tables
Predictive parsing using a parse table

When is a grammar LL(1)?

LL(1) predictive parsing
Informatics 2A: Lecture 10

Alex Simpson

School of Informatics
University of Edinburgh

als@staffmail.ed.ac.uk

8 October, 2013

1 / 12

als@staffmail.ed.ac.uk

LL(1) grammars and parse tables
Predictive parsing using a parse table

When is a grammar LL(1)?

1 LL(1) grammars and parse tables

2 Predictive parsing using a parse table

3 When is a grammar LL(1)?

2 / 12

LL(1) grammars and parse tables
Predictive parsing using a parse table

When is a grammar LL(1)?

LL(1) grammars: the intuition

Think about a (one-state) NPDA derived from a CFG G.

Intuition: at each step, our NPDA can ‘see’ two things:

the current input symbol

the topmost stack symbol

Roughly speaking, we say G is an LL(1) grammar if, just from this
information, it’s possible to determine which transition/production
to apply next. (Precise definition later!) If this is so, parsing can
proceed deterministically and efficiently.

Here LL(1) means ‘read input from Left, build Leftmost derivation,
look just one symbol ahead’.

Subtle point: we can use the input symbol to help us choose a
transition, even if this transition doesn’t consume that input
symbol. . . hence ‘look ahead’.

3 / 12

LL(1) grammars and parse tables
Predictive parsing using a parse table

When is a grammar LL(1)?

Parse tables

Saying the current input symbol and stack symbol uniquely
determine the production means we can draw up a two-dimensional
parse table telling us which production to apply in any situation.

Consider e.g. the following grammar for well-bracketed sequences:

S → ε | TS T → (S)

This has the following parse table:

() $

S S → TS S → ε S → ε
T T → (S)

Columns are labelled by terminals, which are the input symbols. We
include an extra column for an ‘end-of-input’ marker $.
Rows are labelled by nonterminals. If the current stack symbol is a
terminal, just match it against current input symbol.
Blank entries correspond to situations that can never arise in
processing a legal input string.

4 / 12

LL(1) grammars and parse tables
Predictive parsing using a parse table

When is a grammar LL(1)?

Predictive parsing with parse tables

Given such a parse table, parsing can be done very efficiently using
a stack. The stack (reading downwards) records the predicted
sentential form for the remaining part of the input.

Begin with just start symbol S on the stack.

If current input symbol is a (maybe $), and current stack
symbol is a non-terminal X , look up rule for a,X in table.
[Error if no rule.] If rule is X → β, pop X and replace with β
(pushed right-end-first!)

If current input symbol is a and stack symbol is a, just pop a
from stack and advance input read position.
[Error if stack symbol is any other terminal.]

Accept if stack empties with $ as input symbol.
[Error if stack empties sooner.]

5 / 12

LL(1) grammars and parse tables
Predictive parsing using a parse table

When is a grammar LL(1)?

Example of predictive parsing

() $

S S → TS S → ε S → ε
T T → (S)

Let’s use this table to parse the input string (()).

Operation Remaining input Stack state
(())$ S

Lookup (, S (())$ TS
Lookup (, T (())$ (S)S
Match (())$ S)S
Lookup (, S ())$ TS)S
Lookup (, T ())$ (S)S)S
Match ())$ S)S)S
Lookup), S))$)S)S
Match))$ S)S
Lookup), S)$)S
Match) $ S
Lookup $, S $ empty stack

(Also easy to build a syntax tree as we go along!)

6 / 12

LL(1) grammars and parse tables
Predictive parsing using a parse table

When is a grammar LL(1)?

Clicker questions

() $

S S → TS S → ε S → ε
T T → (S)

For each of the following two input strings:

) (

what will go wrong when we try to apply the predictive parsing
algorithm?

1 Blank entry in table encountered

2 Input symbol (or end marker) doesn’t match expected symbol

3 Stack empties before end of string reached

7 / 12

LL(1) grammars and parse tables
Predictive parsing using a parse table

When is a grammar LL(1)?

Further remarks

Slogan: the parse table entry for a,X tells us which rule to apply if
we’re expecting an X and see an a.

Often, the a will be simply the first symbol of the
X -subphrase in question.

But not always: maybe the X -subphrase in question is ε, and
the a belongs to whatever follows the X .

E.g. in the lookups for), S on the previous slide, the S in
question turns out to be empty.

Once we’ve got a parse table for a given grammar G, we can parse
strings of length n in O(n) time (and O(n) space).

Our algorithm is an example of a top-down predictive parser: it
works by ‘predicting’ the form of the remainder of the input, and
builds syntax trees a top-down way (i.e. starting from the root).
There are other parsers (e.g. LR(1)) that work ‘bottom up’.

8 / 12

LL(1) grammars and parse tables
Predictive parsing using a parse table

When is a grammar LL(1)?

LL(1) grammars: formal definition

Suppose G is a CFG containing no ‘useless’ nonterminals, i.e.

every nonterminal appears in some sentential form derived from the
start symbol;

every nonterminal can be expanded to some (possibly empty) string
of terminals.

We say G is LL(1) if for each terminal a and nonterminal X , there
is some production X → α with the following property:

If b1 . . . bnXγ is a sentential form appearing in a leftmost
deriviation of some string b1 . . . bnac1 . . . cm (n,m ≥ 0),
the next sentential form appearing in the derivation is
necessarily b1 . . . bnαγ.

(Note that if a,X corresponds to a ‘blank entry’ in the table, any
production X → α will satisfy this property, because a sentential
form b1 . . . bnXγ can’t arise.)

9 / 12

LL(1) grammars and parse tables
Predictive parsing using a parse table

When is a grammar LL(1)?

Non-LL(1) grammars

Roughly speaking, a grammar is by definition LL(1) if and only if
there’s a parse table for it. Not all CFGs have this property!

Consider e.g. a different grammar for the same language of
well-bracketed sequences:

S → ε | (S) | SS

Suppose we’d set up our initial stack with S, and we see the input
symbol (. What rule should we apply?

If the input string is (()), should apply S → (S).

If the input string is ()(), should apply S → SS . We can’t tell
without looking further ahead.

Put another way: if we tried to build a parse table for this
grammar, the two rules S → (S) and S → SS would be competing
for the slot (, S . So this grammar is not LL(1).

10 / 12

LL(1) grammars and parse tables
Predictive parsing using a parse table

When is a grammar LL(1)?

Remaining issues

Easy to see from the definition that any LL(1) grammar will be
unambiguous: never have two syntax trees for the same string.

For computer languages, this is fine: normally want to avoid
ambiguity anyway.

For natural languages, ambiguity is a fact of life! So LL(1)
grammars are normally inappropriate.

Two outstanding questions. . .

How can we tell if a grammar is LL(1) — and if it is, how can
we construct a parse table? (See Lecture 11.)

If a grammar isn’t LL(1), is there any hope of replacing it by
an equivalent one that is? (See Lecture 12.)

11 / 12

LL(1) grammars and parse tables
Predictive parsing using a parse table

When is a grammar LL(1)?

Reading and prospectus

Relevant reading:

Some lecture notes from a previous year (covering the same
material but with different examples) are available via the
course website. (See Readings colum of course schedule.)

See also Aho, Sethi and Ullman, Compilers: Principles,
Techniques, Tools, Section 4.4.

12 / 12

	LL(1) grammars and parse tables
	Predictive parsing using a parse table
	When is a grammar LL(1)?

