Limitations of regular languages

Informatics 2A: Lecture 7

Alex Simpson
School of Informatics
University of Edinburgh
als@inf.ed.ac.uk
1 October, 2013

(1) Showing a language isn't regular
(2) The pumping lemma
(3) Applying the pumping lemma

Non-regular languages

We have hinted before that not all languages are regular. E.g.

- The language $\left\{a^{n} b^{n} \mid n \geq 0\right\}$.
- The language of all well-matched sequences of brackets (,). N.B. A sequence x is well-matched if it contains the same number of opening brackets '(' and closing brackets ')', and no initial subsequence y of x contains more ')' than '('.
- The language of all prefixes of well-matched sequences of brackets (,). A string x is in this language if no initial subsequence y of x contains more ')' than '('.
But how do we know these languages aren't regular?
And can we come up with a general technique for proving the non-regularity of languages?

The basic intuition: DFAs can't count!

Consider $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$. Just suppose, hypothetically, there were some DFA M with $\mathcal{L}(M)=L$.

Suppose furthermore that M had just processed a^{n}, and some continuation b^{m} was to follow.

Intuition: M would need to have counted the number of a's, in order to know how many b 's to expect.

More precisely, let q_{n} denote the state of M after processing a^{n}. Then for any $m \neq n$, the states q_{m}, q_{n} must be different, since b^{m} takes us to an accepting state from q_{m}, but not from q_{n}.

In other words, M would need infinitely many states, one for each natural number. Contradiction!

Three clicker questions

For each of the following languages over $\{a, b\}$, decide whether they are regular or not.

Press 1 for regular, 2 for non-regular.
(1) Strings with an odd number of a 's and an even number of b 's.
(2) Strings containing strictly more a 's than b 's.
(3) Strings such that (no. of a 's) * (no. of b 's $) \equiv 6(\bmod .24)$

Put slightly differently...

Suppose there were some DFA M for $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$. Then M would have some finite number of states, say k.
Now consider what happens when we feed M with the string a^{k}. It passes through a sequence of $k+1$ states (including the initial state). So there must be some state q that's visited twice or more:

This means the string a^{k} can be decomposed as $u v w$, where

- u takes M from the initial state to q,
- v takes M once round the loop from q to q,
- w is whatever is left of a^{k} after $u v$.
(Note that u and w might be ϵ, but v definitely isn't.)

More generally...

If L is any regular language, we can pick some corresponding DFA M, and it will have some number of states, say k.

Not only must every string of length $\geq k$ cause a revisited state so must every substring of length $\geq k$ within such a string.

Indeed, consider what happens when we run M on a string $x y z \in L$, where $|y| \geq k$. There must be at least one state q we visit twice in the course of processing y :

(There may be other 'revisited states' not indicated here.)

The idea of 'pumping'

So y can be decomposed as $u v w$, where

- $x u$ takes M from the initial state to q,
- $v \neq \epsilon$ takes M once round the loop from q to q,
- $w z$ takes M from q to an accepting state.

But now M will be oblivious to whether, or how many times, we go round the v-loop!
So we can 'pump in' as many copies of the substring v as we like, knowing that we'll still end in an accepting state.

The pumping lemma: official form

The pumping lemma basically summarizes what we've just said.
Pumping Lemma. Suppose L is a regular language. Then L has the following property.

```
(P) There exists k\geq0 such that, for all strings x, y,z
with xyz \inL and |y|\geqk, there exist strings }u,v,w\mathrm{ such
that y =uvw,v\not=\epsilon, and for every i\geq0 we have
xuv i}wz\inL
```


The pumping lemma: contrapositive form

Since we want to use the pumping lemma to show a language isn't regular, we usually apply it in the following equivalent but back-to-front form.

Suppose L is a language for which the following property holds:
$(\neg P)$ For all $k \geq 0$, there exist strings x, y, z with $x y z \in L$ and $|y| \geq k$ such that, for every decomposition of y as $y=u v w$ where $v \neq \epsilon$, there is some $i \geq 0$ for which $x u v^{i} w z \notin L$.

Then L is not a regular language.
N.B. The pumping lemma can only be used to show a language isn't regular. Showing L satisfies (P) doesn't prove L is regular!

To show that a language is regular, give some DFA or NFA or regular expression that defines it.

The pumping lemma: a user's guide

So to show some language L is not regular, it's enough to show that L satisfies $(\neg P)$.

Note that ($\neg \mathrm{P}$) is quite a complex statement: $\forall \cdots \exists \cdots \forall \cdots \exists \cdots$. It's helpful to think in terms of how you would refute an opponent who claimed to have a DFA for L.

We'll look at a simple example first, then offer some advice on the general pattern of argument.

Example 1

Consider $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$.
We show that L satisfies ($\neg \mathrm{P}$).
Suppose $k \geq 0$.
(k is chosen by 'opponent' - we just have to cope.)
Consider the strings $x=\epsilon, y=a^{k}, z=b^{k}$. Note that $x y z \in L$ and $|y| \geq k$ as required.
($x, y z$ are cunningly chosen by 'us'.)
Suppose now we're given a decomposition of y as $u v w$ with $v \neq \epsilon$. (u, v, w chosen by 'opponent' - we have to cope.)
Let $i=0$. (i chosen by 'us'.)
Then $u v^{i} w=u w=a^{l}$ for some $I<k$. So $x u v^{i} w z=a^{l} b^{k} \notin L$. (And so we win!)

Thus L satisfies $(\neg P)$, so L isn't regular.

Use of pumping lemma: general pattern

- The opponent proposes a number $k \geq 0$.

You don't get to choose k - you have to cope with what the opponent throws at you.

- You respond with a cunning choice of strings x, y, z, which might depend on k. These must satisfy $x y z \in L$ and $|y| \geq k$. Also, y should be chosen to 'disallow pumping' ...
- The opponent picks a decomposition of y as $u v w$ with $v \neq \epsilon$. Again, you just have to cope with his choice.
- Finally, you have to choose $i(\neq 1)$ such that $x u v^{i} w z \notin L$. Here i might depend on all the previous data.

Example 2

Consider $L=\left\{a^{n^{2}} \mid n \geq 0\right\}$.
We show that L satisfies $(\neg P)$:
Suppose $k \geq 0$.
Let $x=a^{k^{2}-k}, y=a^{k}, z=\epsilon$, so $x y z=a^{k^{2}} \in L$.
Given any splitting of y as $u v w$ with $v \neq \epsilon$, we have $1 \leq|v| \leq k$.
So taking $i=2$, we have $x u v^{2} w z=a^{n}$ where $k^{2}+1 \leq n \leq k^{2}+k$.
But there are no perfect squares between k^{2} and $k^{2}+2 k+1$.
So n isn't a perfect square. Thus $x u v^{2} w z \notin L$.
Thus L satisfies $(\neg P)$, so L isn't regular.

Reading and prospectus

Relevant reading: Kozen chapters 11, 12.
This concludes the part of the course on regular languages.
Next time, we start on the next level up in the Chomsky hierarchy: context-free languages.

