
More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Regular expressions and Kleene’s theorem
Informatics 2A: Lecture 5

John Longley

School of Informatics
University of Edinburgh
als@inf.ed.ac.uk

1 October 2015

1 / 26

als@inf.ed.ac.uk

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

1 More closure properties of regular languages
Operations on languages
ε-NFAs
Closure under concatenation and Kleene star

2 Regular expressions
Regular expressions
From regular expressions to regular languages

3 Kleene’s theorem and Kleene algebra
Kleene’s theorem
Kleene algebra
From DFAs to regular expressions

2 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Recap of Lecture 4

Regular languages are closed under union, intersection and
complement.

These closure properties are proved using explicit
constructions on finite automata (sometimes using NFAs,
sometimes DFAs).

Every regular language has a unique minimum DFA that
recognises it.

An algorithm for minimizing a DFA.

3 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Operations on languages
ε-NFAs
Closure under concatenation and Kleene star

Concatenation

We write L1.L2 for the concatenation of languages L1 and L2,
defined by:

L1.L2 = {xy | x ∈ L1, y ∈ L2}

For example, if L1 = {aaa} and L2 = {b, c} then L1.L2 is the
language {aaab, aaac}.

Later we will prove the following closure property.

If L1 and L2 are regular languages then so is L1.L2.

4 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Operations on languages
ε-NFAs
Closure under concatenation and Kleene star

Kleene star

We write L∗ for the Kleene star of the language L, defined by:

L∗ = {ε} ∪ L ∪ L.L ∪ L.L.L ∪ . . .

For example, if L3 = {aaa, b} then L∗3 contains strings like aaaaaa,
bbbbb, baaaaaabbaaa, etc.

More precisely, L∗3 contains all strings over {a, b} in which the
letter a always appears in sequences of length some multiple of 3

Later we will prove the following closure property.

If L is a regular language then so is L∗.

5 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Operations on languages
ε-NFAs
Closure under concatenation and Kleene star

Self-assessment question

Consider the language over the alphabet {a, b, c}

L = {x | x starts with a and ends with c}

Which of the following strings are valid for the language L.L ?

1 abcabc Ans: yes

2 acacac Ans: yes

3 abcbcac Ans: yes

4 abcbacbc Ans: no

6 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Operations on languages
ε-NFAs
Closure under concatenation and Kleene star

Self-assessment question

Consider the (same) language over the alphabet {a, b, c}

L = {x | x starts with a and ends with c}

Which of the following strings are valid for the language L∗ ?

1 ε Ans: yes

2 acaca Ans: no

3 abcbc Ans: yes

4 acacacacac Ans: yes

7 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Operations on languages
ε-NFAs
Closure under concatenation and Kleene star

NFAs with ε-transitions

We can vary the definition of NFA by also allowing transitions
labelled with the special symbol ε (not a symbol in Σ).

The automaton may (but doesn’t have to) perform a spontaneous
ε-transition at any time, without reading an input symbol.

This is quite convenient: for instance, we can turn any NFA into an
ε-NFA with just one start state and one accepting state:

ε

ε ε
ε

ε

ε

.

.

.

(Add ε-transitions from new start state to each state in S , and
from each state in F to new accepting state.)

8 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Operations on languages
ε-NFAs
Closure under concatenation and Kleene star

Equivalence to ordinary NFAs

Allowing ε-transitions is just a convenience: it doesn’t
fundamentally change the power of NFAs.

If N = (Q,∆, S ,F) is an ε-NFA, we can convert N to an ordinary
NFA with the same associated language, by simply ‘expanding’ ∆
and S to allow for silent ε-transitions.

To achieve this, perform the following steps on N.

For every pair of transitions q
a→ q′ (where a ∈ Σ) and

q′
ε→ q′′, add a new transition q

a→ q′′.

For every transition q
ε→ q′, where q is a start state, make q′

a start state too.

Repeat the two steps above until no further new transitions or new
start states can be added.

Finally, remove all ε-transitions from the ε-NFA resulting from the
above process. This produces the desired NFA.

9 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Operations on languages
ε-NFAs
Closure under concatenation and Kleene star

Closure under concatenation

We use ε-NFAs to show, as promised, that regular languages are
closed under the concatenation operation:

L1.L2 = {xy | x ∈ L1, y ∈ L2}

If L1, L2 are any regular languages, choose ε-NFAs N1,N2 that
define them. As noted earlier, we can pick N1 and N2 to have just
one start state and one accepting state.

Now hook up N1 and N2 like this:

N1 N2ε

Clearly, this NFA corresponds to the language L1.L2.
10 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Operations on languages
ε-NFAs
Closure under concatenation and Kleene star

Closure under Kleene star

Similarly, we can now show that regular languages are closed under
the Kleene star operation:

L∗ = {ε} ∪ L ∪ L.L ∪ L.L.L ∪ . . .

For suppose L is represented by an ε-NFA N with one start state
and one accepting state. Consider the following ε-NFA:

 N
ε

ε

Clearly, this ε-NFA corresponds to the language L∗.

11 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Regular expressions
From regular expressions to regular languages

Regular expressions

We’ve been looking at ways of specifying regular languages via
machines (often presented as pictures). But it’s very useful for
applications to have more textual ways of defining languages.

A regular expression is a written mathematical expression that
defines a language over a given alphabet Σ.

The basic regular expressions are

∅ ε a (for a ∈ Σ)

From these, more complicated regular expressions can be built
up by (repeatedly) applying the two binary operations +, .
and the unary operation ∗ . Example: (a.b + ε)∗ + a

We use brackets to indicate precedence. In the absence of brackets,
∗ binds more tightly than ., which itself binds more tightly than +.

So a + b.a∗ means a + (b.(a∗))

Also the dot is often omitted: ab means a.b 12 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Regular expressions
From regular expressions to regular languages

How do regular expressions define languages?

A regular expression is itself just a written expression. However,
every regular expression α over Σ can be seen as defining an actual
language L(α) ⊆ Σ∗ in the following way.

L(∅) = ∅, L(ε) = {ε}, L(a) = {a}.
L(α + β) = L(α) ∪ L(β)

L(α.β) = L(α) .L(β)

L(α∗) = L(α)∗

Example: a + ba∗ defines the language {a, b, ba, baa, baaa, . . .}.
The languages defined by ∅, ε, a are obviously regular.

What’s more, we’ve seen that regular languages are closed under
union, concatenation and Kleene star.

This means every regular expression defines a regular language.
(Formal proof by induction on the size of the regular expression.)

13 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Regular expressions
From regular expressions to regular languages

Self-assessment question

Consider (again) the language

{x ∈ {0, 1}∗ | x contains an even number of 0’s}

Which of the following regular expressions define the above
language?

1 (1∗01∗01∗)∗ Ans: no — 1 does not match expression

2 (1∗01∗0)∗1∗ Ans: yes

3 1∗(01∗0)∗1∗ Ans: no — 00100 does not match expression

4 (1 + 01∗0)∗ Ans: yes

14 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Kleene’s theorem
Kleene algebra
From DFAs to regular expressions

Kleene’s theorem

We’ve seen that every regular expression defines a regular language.

The major goal of the lecture is to show the converse: every regular
language can be defined by a regular expression. For this purpose,
we introduce Kleene algebra: the algebra of regular expressions.

The equivalence between regular languages and expressions is:

Kleene’s theorem

DFAs and regular expressions give rise to exactly the
same class of languages (the regular languages).

As we’ve already seen, NFAs (with or without ε-transitions) also
give rise to this class of languages.

So the evidence is mounting that the class of regular languages is
mathematically a very ‘natural’ class to consider.

15 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Kleene’s theorem
Kleene algebra
From DFAs to regular expressions

Kleene algebra

Regular expressions give a textual way of specifying regular
languages. This is useful e.g. for communicating regular languages
to a computer.

Another benefit: regular expressions can be manipulated using
algebraic laws (Kleene algebra). For example:

α + (β + γ) = (α + β) + γ α + β = β + α
α + ∅ = α α + α = α
α(βγ) = (αβ)γ εα = αε = α

α(β + γ) = αβ + αγ (α + β)γ = αγ + βγ
∅α = α∅ = ∅ ε + αα∗ = ε + α∗α = α∗

Often these can be used to simplify regular expressions down to
more pleasant ones.

16 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Kleene’s theorem
Kleene algebra
From DFAs to regular expressions

Other reasoning principles

Let’s write α ≤ β to mean L(α) ⊆ L(β) (or equivalently
α + β = β). Then

αγ + β ≤ γ ⇒ α∗β ≤ γ
β + γα ≤ γ ⇒ βα∗ ≤ γ

Arden’s rule: Given an equation of the form X = αX + β, its
smallest solution is X = α∗β.

What’s more, if ε 6∈ L(α), this is the only solution.

Beautiful fact: The rules on this slide and the last form a complete
set of reasoning principles, in the sense that if L(α) = L(β), then
‘α = β’ is provable using these rules. (Beyond scope of Inf2A.)

17 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Kleene’s theorem
Kleene algebra
From DFAs to regular expressions

DFAs to regular expressions

We use an example to show how to convert a DFA to an
equivalent regular expression.

0

1 1

0

p q

For each state r , let the variable Xr stand for the set of strings
that take us from r to an accepting state. Then we can write some
simultaneous equations:

Xp = 1Xp + 0Xq + ε

Xq = 1Xq + 0Xp

18 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Kleene’s theorem
Kleene algebra
From DFAs to regular expressions

Where do the equations come from?

Consider:
Xp = 1Xp + 0Xq + ε

This asserts the following.

Any string that takes us from p to an accepting state is:

a 1 followed by a string that takes us from p to an accepting
state; or

a 0 followed by a string that takes us from q to an accepting
state; or

the empty string.

Note that the empty string is included because p is an accepting
state.

19 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Kleene’s theorem
Kleene algebra
From DFAs to regular expressions

Solving the equations

We solve the equations by eliminating one variable at a time:

Xq = 1∗0Xp by Arden’s rule

So Xp = 1Xp + 01∗0Xp + ε

= (1 + 01∗0)Xp + ε

So Xp = (1 + 01∗0)∗ by Arden’s rule

Since the start state is p, the resulting regular expression for Xp is
the one we are seeking. Thus the language recognised by the
automaton is:

(1 + 01∗0)∗

The method we have illustrated here, in fact, works for arbitrary
NFAs (without ε-transitions).

20 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Kleene’s theorem
Kleene algebra
From DFAs to regular expressions

Theory of regular languages: overview

21 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Kleene’s theorem
Kleene algebra
From DFAs to regular expressions

End-of-lecture question

N1 N2ε

Suppose the above ε-NFA defining concatenation is modified by
identifying the final state of N1 with the start state of N2 (and
removing the then-redundant ε-transistion linking the two states).

1 Find a pair of ε-NFAs, N1 and N2, each with a single start
state and single accepting state, for which the modified
construction does not recognise L(N1).L(N2).

2 Show that if N1 has no loops from the accepting state back to
itself, then the modified ε-NFA does recognise L(N1).L(N2).

3 Which construction of an ε-NFA in this lecture violates the
assumption above about N1?

22 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Kleene’s theorem
Kleene algebra
From DFAs to regular expressions

Reading

Relevant reading:

Regular expressions: Kozen chapters 7,8; J & M chapter 2.1.
(Both texts actually discuss more general ‘patterns’ — see
next lecture.)

From regular expressions to NFAs: Kozen chapter 8; J & M
chapter 2.3.

Kleene algebra: Kozen chapter 9.

From NFAs to regular expressions: Kozen chapter 9.

Next time: Some applications of all this theory.

Pattern matching

Lexical analysis

23 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Kleene’s theorem
Kleene algebra
From DFAs to regular expressions

Appendix: (non-examinable) proof of Kleene’s theorem

Given an NFA N = (Q,∆, S ,F) (without ε-transitions), we’ll show
how to define a regular expression defining the same language as N.

In fact, to build this up, we’ll construct a three-dimensional array
of regular expressions αX

uv : one for every u ∈ Q, v ∈ Q,X ⊆ Q.

Informally, αX
uv will define the set of strings that get us from u to

v allowing only intermediate states in X .

We shall build suitable regular expressions αX
u,v by working our way

from smaller to larger sets X .

Eventually, the language defined by N will be given by the sum
(+) of the languages αQ

sf for all states s ∈ S and f ∈ F .

24 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Kleene’s theorem
Kleene algebra
From DFAs to regular expressions

Construction of αX
uv

Here’s how the regular expressions αX
uv are built up.

If X = ∅, let a1, . . . , ak be all the symbols a such that
(u, a, v) ∈ ∆. Two subcases:

If u 6= v , take α∅uv = a1 + · · ·+ ak

If u = v , take α∅uv = (a1 + · · ·+ ak) + ε

Convention: if k = 0, take ‘a1 + . . .+ ak ’ to mean ∅.

If X 6= ∅, choose any q ∈ X , let Y = X − {q}, and define

αX
uv = αY

uv + αY
uq(αY

qq)∗αY
qv

Applying these rules repeatedly gives us αX
u,v for every u, v ,X .

25 / 26

More closure properties of regular languages
Regular expressions

Kleene’s theorem and Kleene algebra

Kleene’s theorem
Kleene algebra
From DFAs to regular expressions

NFAs to regular expressions: tiny example

Let’s revisit our old friend:

0

1 1

0

p q

Here p is the only start state and the only accepting state.
By the rules on the previous slide:

α
{p,q}
p,p = α

{p}
p,p + α

{p}
p,q (α

{p}
q,q)∗α

{p}
q,p

Now by inspection (or by the rules again), we have

α
{p}
p,p = 1∗ α

{p}
p,q = 1∗0

α
{p}
q,q = 1 + 01∗0 α

{p}
q,p = 01∗

So the required regular expression is

1∗ + 1∗0(1 + 01∗0)∗01∗ (A bit messy!)
26 / 26

	More closure properties of regular languages
	Operations on languages
	-NFAs
	Closure under concatenation and Kleene star

	Regular expressions
	Regular expressions
	From regular expressions to regular languages

	Kleene's theorem and Kleene algebra
	Kleene's theorem
	Kleene algebra
	From DFAs to regular expressions

