Undecidability

Informatics 2A: Lecture 30

Alex Simpson

School of Informatics
University of Edinburgh
als@inf.ed.ac.uk

25 November, 2014

1/17

als@inf.ed.ac.uk

Universal Turing machines

Recap: Turing machines

----- ‘:‘a‘c‘3

read, write
move L/R

finite
control

e If || > 2, any kind of ‘finite data’ can be coded up as a string
in X*, which can then be written onto a Turing machine tape.
(E.g. natural numbers could be written in binary.)

@ According to the Church-Turing thesis (CTT), any
‘mechanical computation’ that can be performed on finite
data can be performed in principle by a Turing machine.

@ Any decent programming language has the same
computational power in principle as a Turing machine.

2/17

Universal Turing machines

Universal Turing machines

Consider any Turing machine with input alphabet X.

Such a machine T s itself specified by a finite amount of
information, so can in principle be ‘coded up’ by a string T € L*.
(Details don't matter).

So one can imagine a universal Turing machine U which:

@ Takes as its input a coded description T of some TM T,
along with an input string s, separated by a blank symbol.

@ Simulates the behaviour of T on the input string s.
(N.B. a single step of T may require many steps of U.)

o If T ever halts (i.e. enters final state), U will halt.
o If T runs forever, U will run forever.

If we believe CTT, such a U must exist — but in any case, it's
possible to construct one explicitly.

3/17

Universal Turing machines

The concept of a general-purpose computer

Alan Turing's discovery of the existence of a universal Turing
machine (1936) was in some sense the fundamental insight that
gave us the general-purpose (programmable) computer!

In most areas of life, we have different machines for different jobs.
So isn't it remarkable that a single physical machine can be
persuaded to perform as many different tasks as a computer can
...just by feeding it with a cunning sequence of 0's and 1's!

4/17

The halting problem

The halting problem

The universal machine U in effect serves as a recognizer for the set
{T_s| T halts on input s}
But is there also a machine V that recognizes the set
{T_s| T doesn't halt on input s} ?

If there were, then given any T and s, we could run U and V in
parallel, and we'd eventually get an answer to the question
“does T halt on input s?”

Conversely, if there were a machine that answered this question,
we could construct a machine V with the above property.

Theorem: There is no such Turing machine V!
So the halting problem is undecidable.
5/17

The halting problem

Proof of undecidability

Why is the halting problem undecidable?
Suppose V existed. Then we could easily make a Turing machine
W that recognised the set L defined by:

L = {s€ X*| the TM coded by s runs forever on the input s}
(W could just write two copies of its input string s, separated by a
blank, and thereafter behave as V.)

Now consider what W does when given the string W as input.
That is, the input to W is the string that encodes W itself.
o W accepts W iff W runs forever on W (since W recognises L)
@ but W accepts W iff W halts on W (definition of acceptance)
Contradiction!!! So V can't exist after alll

6/17

The halting problem

Precursor: Russell’s paradox (1901)

Define R to be the set of all sets that don’t contain themselves:
R ={S|S¢S}

Does R contain itself, i.e. is R € R?

Russell's analogy: The village barber shaves exactly those men in
the village who don’t shave themselves. Does the barber shave
himself, or not?

7/17

The halting problem

Precursor: Russell’s paradox (1901)

Define R to be the set of all sets that don’t contain themselves:
R ={S|S¢S}

Does R contain itself, i.e. is R € R?

Conclusion: no such set R exists.

Russell's analogy: The village barber shaves exactly those men in
the village who don’t shave themselves. Does the barber shave
himself, or not?

7/17

The halting problem

Precursor: Russell’s paradox (1901)

Define R to be the set of all sets that don’t contain themselves:
R ={S|S¢S}

Does R contain itself, i.e. is R € R?

Conclusion: no such set R exists.

Russell's analogy: The village barber shaves exactly those men in
the village who don’t shave themselves. Does the barber shave
himself, or not?

Conclusion: no man exists in the village with the property
identified by Russell.

7/17

The halting problem

Decidable vs. semidecidable sets

In general, a set S (e.g. C X*) is called decidable if there's a
mechanical procedure which, given s € ¥*, will always return a
yes/no answer to the question “Is s € S7".

E.g. the set {s | s represents a prime number} is decidable.

We say S is semidecidable if there's a mechanical procedure which
will return ‘yes’ precisely when s € S (it isn't obliged to return
anything if s € S).

Semidecidable sets coincide with recursively enumerable sets, i.e.
those that can be ‘listed’ by a mechanical procedure left to run
forever. Also with recursively enumerable (i.e., Type 0) languages
as defined in lectures 28-9

The halting set {T_s| T halts on input s} is an example a
semidecidable set that isn't decidable. So there exist Type 0

languages for which membership is undecidable.
8/17

The halting problem

Separating Type 0 and Type 1

Every Type 1 (context-sensitive) language is decidable.
(The argument was outlined in Lecture 29, Slide 12.)

As we have seen, the halting set
{T_s| T halts on input s}
is an undecidable Type 0 language.

So the halting set is an example of a Type 0 language that is not a
Type 1 language.

9/17

Undecidable problems

Undecidable problems in mathematics

The existence of ‘mechanically unsolvable’ mathematical problems
was in itself a major breakthrough in mathematical logic: until
about 1930, some people (the influential mathematician David
Hilbert, in particular) hoped there might be a single killer
algorithm that could solve ‘all’ mathematical problems!

Once we have one example of an unsolvable problem (the halting
problem), we can use it to obtain others — typically by showing
“the halting problem can be reduced to problem X."

(If we had a mechanical procedure for solving X, we could use it to
solve the halting problem.)

10/17

Undecidable problems

Example: Provability of theorems

Let M be some reasonable (consistent) formal logical system for
proving mathematical theorems (something like Peano arithmetic
or Zermelo-Fraenkel set theory).

Theorem: The set of theorems provable in M is semidecidable (and
hence is a Type 0 language), but not decidable.

Proof: Any reasonable system M will be able to prove all true statements
of the form “T halts on input s”. So if we could decide M-provability, we
could solve the halting problem.

Corollary (Godel): However strong M is, there are mathematical
statements P such that neither P nor =P is provable in M.

Proof: Otherwise, given any P we could search through all possible
M-proofs until either a proof of P or of =P showed up. This would give
us an algorithm for deciding M-provability.

11/17

Undecidable problems

Example: Diophantine equations

Suppose we're given a set of simultaneous equations involving
polynomials in several variables with integer coefficients. E.g.

3xy + 4z +5wx? = 27
xX2+y3 -0z = 4
w®—z% = 31
X2+ y?+ 22 +w? = 2536427

Hilbert's 10th Problem (1900): Is there a mechanical procedure for
determining whether a set of polynomial equations has an integer
solution?

Matiyasevich” Theorem (1970): it is undecidable, whether a set of
polynomial equations has an integer solution.

(By contrast, it's decidable whether there's a solution in real

numbers!)
12/17

Undecidable problems

Examples from Language Processing itself

(The snake bites its own tail ...)

@ Pretty much all natural problems involving regular languages /
DFAs / NFAs are decidable. E.g. “do two DFAs define the
same language?”: apply the minimization algorithm and see if
they're isomorphic.

@ This isn't true for context-free languages. E.g. it is
undecidable, given a context-free grammar G with terminals
Y, whether or not £(G) is the whole of X*.

@ It is also undecidable, given CFGs G; and Gy, whether
L(G1) N L(Gy) is a context-free language.

So undecidability does crop up ‘naturally’ in many areas of
mathematics.

13/17

Undecidable problems

End-of-course questions

What is the status of determining whether £(G) is nonempty ...

Q1: ... when G is a regular grammar? (not too hard)

© Decidable
@ Semidecidable
© Not even semidecidable

14/17

Undecidable problems

End-of-course questions

What is the status of determining whether £(G) is nonempty ...

Q1: ... when G is a regular grammar? (not too hard)
Q2: ... when G is a context-free grammar? (very hard)
© Decidable

@ Semidecidable
© Not even semidecidable

14/17

Undecidable problems

End-of-course questions

What is the status of determining whether £(G) is nonempty ...

Q1: ... when G is a regular grammar? (not too hard)

Q2: ... when G is a context-free grammar? (very hard)

Q3: ... when G is a context-sensitive grammar? (fiendishly hard)
© Decidable

@ Semidecidable
© Not even semidecidable

14/17

Undecidable problems

End-of-course answers: Questions 1 and 2

Q1: decidable.

Convert the regular grammar G to an NFA M. The language £(G)
is nonempty if and only if there is a path in M from an initial state
to a final state. It is easy to see that the existence of such a path is
decidable, using a simple search algorithm.

Q2: decidable.

This is proved using the ‘tree surgery’ used in the proof of the
context-free pumping lemma. If there is some syntax tree in the
CFG G, then, using tree surgery, there must exist a syntax tree in
which no path has a repeated noterminal. Given this, one just
needs to search the finite space of all potential such syntax trees to
see if one can be constructed in which all leaves are decorated by
terminals (or ¢).

15/17

Undecidable problems

End-of-course answers: Question 3

Q3: semidecidable.

The following algorithm terminates if and only if £(G) is
nonempty. lterate, in turn, through the infinite set xi, x2, x3, xa, . . .
of all strings over X. For each x;, perform the algorithm (slides 3
and 12 of Lecture 29) that decides if x; € £L(G). As soon as one of
the tests x; € £(G) succeeds, stop the process.

It is not however decidable if £(G) is nonempty, for context
sensitive G. Suppose, for contradiction, that this were decidable.
Let G’ be a context-free grammar. The complement ¥* — £L(G) is
context sensitive and we can algorithmically produce a context
sensitive grammar G for it. Apply our hypothesised decision
procedure to test if £(G) is nonempty. This returns ‘yes' if and
only if £L(G') # X*, and ‘no’ otherwise. By swapping 'yes’ and
‘no’, we have constructed a decision procedure to decide if £(G")

is the whole of £* for context-free G’. This contradicts slide 13.
16 /17

Undecidable problems

That's all folks!

That concludes the course syllabus.

On Thursday, John and | will present a joint revision lecture, in
which we shall discuss:

@ the exam structure

@ examinable material

e pointers to UG3 (and upwards) Informatics courses that
continue from this one

17/17

	Universal Turing machines
	The halting problem
	Undecidable problems

