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Syntax and Semantics

Syntax is concerned with which expressions in a language are
well-formed or grammatically correct. This can largely be described
by rules that make no reference to meaning.
Semantics is concerned with the meaning of expressions: i.e. how
they relate to ‘the world’. This includes both their

denotation (literal meaning)

connotation (other associations)

When we say a sentence is ambiguous, we usually mean it has
more than one ‘meaning’. (So what exactly are meanings?)

We’ve already encountered word sense ambiguity and structural
ambiguity. We’ll also meet another kind of semantic ambiguity,
called scope ambiguity. (This already shows that the meaning of a
sentence can’t be equated with its parse tree.)
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Formal and natural language semantics

Providing a semantics for a language (natural or formal) involves
giving a systematic mapping from the structure underlying a string
(e.g. syntax tree) to its ‘meaning’.

Whilst the kinds of meaning conveyed by NL are much more
complex than those conveyed by FLs, they both broadly adhere to
a principle called compositionality.
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Compositionality

Compositionality: The meaning of a complex expression is a
function of the meaning of its parts and of the rules by which they
are combined.

While formal languages are designed for compositionality, the
meaning of NL utterances can often (not always) be derived
compositionally as well.

Compare:

purple armadillo hot dog
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Other desiderata for Meaning Representation

Verifiability: One must be able to use the meaning representation
of a sentence to determine whether the sentence is true with
respect to some given model of the world.

Example: given an exhaustive table of ‘who loves whom’ relations
(a world model), the meaning of a sentence like everybody loves
Mary can be established by checking it against this model.
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Desiderata for Meaning Representation

Unambiguity: a meaning representation should be unambiguous,
with one and only one interpretation. If a sentence is ambiguous,
there should be a different meaning representation for each sense.

Example: each interpretation of I made her duck or time flies like
an arrow should have a distinct meaning representation.
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Desiderata for Meaning Representation

Canonical form: the meaning representations for sentences with
the same meaning should (ideally) both be convertible into the
same canonical form, that shows their equivalence.

Example: the sentence I filled the room with balloons should
ideally have the same canonical form with I put enough balloons in
the room to fill it from floor to ceiling.

(The kind of formal semantics we discuss won’t achieve this
particularly well!)
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Desiderata for Meaning Representation

Logical inference: A good meaning representation should come
with a set of rules for logical inference or deduction, showing which
truths imply which other truths.

E.g. from

Zoot is an armadillo.
Zoot is purple.
Every purple armadillo sneezes.

we should be able to deduce

Zoot sneezes.
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Propositional Logic

Propositional logic is a very simple system for meaning
representation and reasoning in which expressions comprise:

atomic sentences (P, Q, etc.);

complex sentences built up from atomic sentences and logical
connectives (and, or, not, implies).
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Propositional Logic

Why not use propositional logic as a meaning representation
system for NL? E.g.

Fred ate lentils or he ate rice. (P ∨ Q)
Fred ate lentils or John ate lentils (P ∨ R)

We’re unable to represent the internal structure of the
proposition ’Fred ate lentils’ (e.g. how its meaning is derived
from that of ’Fred’, ’ate’, ’lentils’).

We’re unable to express e.g.

Everyone ate lentils.
Someone ate lentils.
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Predicate Logic

First-order predicate logic (FOPL) let us do a lot more (though
still only accounts for a tiny part of NL).

Sentences in FOPL are built up from terms made from:

constant and variable symbols that represent entities;

predicate symbols that represent properties of entities and
relations that hold between entities;

function symbols (won’t bother with these here).

which are combined into simple sentences (predicate-argument
structures) and complex sentences through:

quantifiers (∀, ∃) disjunction (∨)
negation (¬) implication (⇒)
conjunction (∧) equality (=)
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Constants

Constant symbols:

Each constant symbol denotes one and only one entity:
Scotland, Aviemore, EU, Barack Obama, 2007

Not all entities have a constant that denotes them:
Barack Obama’s right knee, this piece of chalk

Several constant symbols may denote the same entity:
The Morning Star ≡ The Evening Star ≡ Venus
National Insurance number, Student ID, your name
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Predicates

Predicate symbols:

Every predicate has a specific arity. E.g. brown/1, country/1,
live in/2, give/3.

A predicate symbol of arity n is interpreted as a set of
n-tuples of entities that satisfy it.

Predicates of arity 1 denote properties: brown/1.

Predicates of arity > 1 denote relations: live in/2, give/3.
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Variables

Variable symbols: x, y, z:

Variable symbols range over entities.

An atomic sentence with a variable among its arguments, e.g.,
Part of(x, EU), only has a truth value if that variable is bound
by a quantifier.
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Universal Quantifier (∀)

Universal quantifiers can be used to express general truths:

Cats are mammals

∀x.Cat(x) ⇒ Mammal(x)

Intuitively, a universally quantified sentence corresponds to a
(possibly infinite) conjunction of sentences:

Cat(sam) ⇒ Mammal(sam) ∧ Cat(zoot) ⇒ Mammal(zoot)
∧ Cat(fritz) ⇒ Mammal(fritz) ∧ . . .

A quantifier has a scope, analogous to scope of PL variables.
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Existential Quantifier (∃)

Existential quantifiers are used to express the existence of an entity
with a given property, without specifying which entity:

I have a cat

∃x.Cat(x) ∧ Own(i, x)

An existentially quantified sentence corresponds intuitively to a
disjunction of sentences:

(Cat(Josephine) ∧ Own(I, Josephine)) ∨
(Cat(Zoot) ∧ Own(I, Zoot)) ∨
(Cat(Malcolm) ∧ Own(I, Malcolm)) ∨
(Cat(John) ∧ Own(I, John)) ∨ . . .
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Existential Quantifier (∃)

Why do we use “∧” rather than “⇒” with the existential
quantifier? What would the following correspond to?

∃x.Cat(x) ⇒ Own(i, x)
(a) I own a cat
(b) There’s something such that if it’s a cat, I own it.

What if that something isn’t a cat?

The proposition formed by connecting two propositions with
⇒ is true if the antecedent (the left of the ⇒) is false.

So this proposition is true if there is something that’s e.g. a
laptop. But “I own a cat” shouldn’t be true simply for this
reason.
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Abstract syntax of FOPL

The language of first-order predicate logic can be defined by the
following CFG (think of it as a grammar for abstract syntax trees).
We write F for formulae, AF for atomic formulae, t for terms, v for
variables, c for constants.

F → AF | F ∧ F | F ∨ F | F ⇒ F | ¬ F
| ∀ v.F | ∃ v.F

AF → t=t | UnaryPred(t) | BinaryPred(t,t) | . . .
t → v | c
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Clicker question

Which captures the meaning of Every dog has a bone?

1 ∀x .∃y .(dog(x) ∧ bone(y) ∧ has(x , y))

2 ∀x .(dog(x)⇒ ∃y .(bone(y) ∧ has(x , y)))

3 ∀x .∃y .bone(y) ∧ (dog(x)⇒ has(x , y))

4 ∃y .∀x .(dog(x)⇒ (bone(y) ∧ has(x , y)))

(N.B. The logical form looks structurally quite different from the
parse tree for the original sentence. So there’s some real work to
be done!)
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Compositionality

Compositionality: The meaning of a complex expression is a
function of the meaning of its parts and of the rules by which they
are combined.

Do we have sufficient tools to systematically compute meaning
representations according to this principle?

The meaning of a complete sentence will hopefully be a FOPL
formula, which we consider as having type t (truth values).
But the meaning of smaller fragments of the sentence will
have other types. E.g.

has a bone < e, t >
every dog << e, t >, t >

The idea is to show how to associate a meaning with such
fragments, and how these meanings combine.
To do this, we need to extend our language of FOPL with λ
expressions (λ = lambda; written as \ in Haskell).
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Lambda (λ) Expressions

λ-expressions are an extension to FOPL that allows us to work
with ‘partially constructed’ formulae. A λ-expression consists of:

the Greek letter λ, followed by a variable (formal parameter);

a FOPL expression that may involve that variable.

λx .sleep(x) : < e, t >
‘The function that takes an entity x to the statement sleep(x)’

(λx .sleep(x))︸ ︷︷ ︸
function

(Mary)︸ ︷︷ ︸
argument

: t

A λ-expression can be applied to a term.
(The above has the same truth value as sleep(Mary).)
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Lambda expressions can be nested. We can use nesting to create
functions of several arguments that accept their arguments one at
a time.

λy .λx . love(x,y) : < e, < e, t >>
‘The function that takes y to
(the function that takes x to the statement love(x,y))’

λz .λy .λx . give(x,y,z) : < e, < e, < e, t >>>
‘The function that takes z to
(the function that takes y to
(the function that takes x to the statement give(x,y,z)))’
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Beta Reduction

When a lambda expression applies to a term, a reduction operation
(beta (β) reduction) can be used to replace its formal parameter
with the term and simplify the result. In general:

(λx .M)N ⇒β M[x 7→ N] (M with N substituted for x)

(λx .sleep(x))︸ ︷︷ ︸
function

(Mary)︸ ︷︷ ︸
argument

⇒β sleep(Mary)

(λy .λx .love(x , y))︸ ︷︷ ︸
function

(crabapples)︸ ︷︷ ︸
argument

⇒β λx .love(x , crabapples)

(λx .love(x , crabapples))︸ ︷︷ ︸
function

(Mary)︸ ︷︷ ︸
argument

⇒β love(Mary , crabapples)
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Summary

Principle of compositionality: the meaning of an complex
expression is a function of the meaning of its parts.

Predicate logic can be used to give meaning representations
for a certain portion of natural language.

λ-expressions can be used to represent meanings for fragments
of sentences.

In the next lecture, we’ll see how the meaning of sentences
can be systematically derived in a compositional way using
such λ-expressions.
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