Context-free grammars

Informatics 2A: Lecture 8

Alex Simpson

School of Informatics
University of Edinburgh
als@inf.ed.ac.uk

2 October, 2014

1/23

als@inf.ed.ac.uk

Recap of lecture 7

@ Languages that require an ability to count are not regular.

e Examples of this are {a"b" | n > 0} and the language of
well-matched sequences of brackets.

@ The pumping lemma captures a pattern of regularity
necessarily present in a regular language.

@ When applied in its contrapositive form the pumping lemma

provides a powerful tool for proving that a given language is
not regular.

2/23

Defining languages via grammars: some examples

Beyond regular languages

Regular languages have significant limitations. (E.g. they can't
cope with nesting of brackets).

So we'd like some more powerful means of defining languages.
Today we'll explore a new approach — via generative grammars

(Chomsky 1952). A language is defined by giving a set of rules
capable of ‘generating’ all the sentences of the language.

The particular kind of generative grammars we'll consider are
called context-free grammars.

3/23

Defining languages via grammars: some examples

Context-free grammars: an example

Here is an example context-free grammar.

Exp — Var | Num | (Exp)
Exp — Exp + Exp

Exp — Exp % Exp

Var — x |y | z

Num — 0] -+ |9

It generates simple arithmetic expressions such as
6+7 5% (x+3) xx((z%x2)+y) 8 z

The symbols +, %, (,), x,y,z,0,...,9 are called terminals: these
form the ultimate constituents of the phrases we generate.

The symbols Exp, Var, Num are called non-terminals: they name

various kinds of ‘sub-phrases’. We designate Exp the start symbol.
4/23

Defining languages via grammars: some examples

Syntax trees

We grow syntax trees by repeatedly expanding non-terminal
symbols using these rules. E.g.:

Exp
e
Exp * Exp
Nlm /Exp\ This generates 5 * (x + 3).
| /TN
E?p + Erp
V‘ar Num
s

5/23

Defining languages via grammars: some examples

The language defined by a grammar

By choosing different rules to apply, we can generate infinitely
many strings from this grammar.

The language generated by the grammar is, by definition, the set
of all strings of terminals that can be derived from the start
symbol via such a syntax tree.

Note that strings such as 14243 may be generated by more than
one tree (structural ambiguity):

Exp Exp
E/‘\E E/‘\E
Xp + Xp Xp + Xp
VARN /1N
Exp + Exp Num Num E?p + Erp
Num Num 3 1 NFm NFm
|) 2 3

6/23

Defining languages via grammars: some examples

Challenge question

How many possible syntax trees are there for the string below?

1+2+3+4

7/23

Defining languages via grammars: some examples

Derivations

As a more ‘machine-oriented’ alternative to syntax trees, we can
think in terms of derivations involving (mixed) strings of terminals
and non-terminals. E.g.

Exp = ExpxExp
Num *x Exp
Num * (Exp)
Num * (Exp + Exp)
5 % (Exp + Exp)
5 % (Exp + Num)
5% (Var + Exp)
5 (x + Exp)
5% (x +3)

S I

At each stage, we choose one non-terminal and expand it using a

suitable rule. When there are only terminals left, we can stop!
8/23

Defining languages via grammars: some examples

Multiple derivations

Clearly, any derivation can be turned into a syntax tree.

However, even when there’s only one syntax tree, there might be
many derivations for it:

Exp = Exp+Exp Exp = Exp+Exp
= Num + Exp = Exp + Num
= 1+ Exp = Exp+2
= 14+ Num = Num+2
= 1+2 = 1+2
(...a leftmost derivation) (...a rightmost derivation)

In the end, it's the syntax tree that matters — we don't normally
care about the differences between various derivations for it.

However, derivations — especially leftmost and rightmost ones —

will play a significant role when we consider parsing algorithms. 023

Defining languages via grammars: some examples

Second example: comma-separated lists

Consider lists of (zero or more) alphabetic characters, separated by
commas:
€ a e, d q,w,e,r,t,y

These can be generated by the following grammar (note the rules
with empty right hand side).

List — € | Char Tail

Tail — € | , Char Tall

Char — a | -+ | z
Terminals: a,...,z, ,

Non-terminals: List, Tail, Char
Start symbol: List

10/23

Defining languages via grammars: some examples

Syntax trees for comma-separated lists

List — € | Char Tail
Tail — ¢ | , Char Tail
Char — a| -+ | z

Here is the syntax tree for the list a, b, c:
List

Ch{ \ail
VARN

Char ail
\ \
b
C‘har Tail
c €

Notice how we indicate the application of an ‘e-rule’.
11/23

Defining languages via grammars: some examples

Other examples

@ The language {a"b" | n > 0} may be defined by the grammar:

S — €| aSb

@ The language of well-matched sequences of brackets () may
be defined by

S = e| SS|(S)

So both of these are examples of context-free languages.

12/23

Context-free grammars: the formal definition

Context-free grammars: formal definition

A context-free grammar (CFG) G consists of
@ a finite set NV of non-terminals,
@ a finite set ¥ of terminals, disjoint from N,

@ a finite set P of productions of the form X — «, where
XeN, ae(NUX)¥,

@ a choice of start symbol S € N.

13/23

Context-free grammars: the formal definition

A sentential form is any sequence of terminals and nonterminals
that can appear in a derivation starting from the start symbol.

Formal definition: The set of sentential forms derivable from G is
the smallest set S(G) C (N U X)* such that

e ScS5(9)
o if aXf € §(G) and X — v € P, then ayf € S(G).

The language associated with grammar is the set of sentential
forms that contain only terminals.

Formal definition: The language associated with G is defined by
L(G) = S(G)nxx

14/23

Context-free grammars: the formal definition

A sentential form is any sequence of terminals and nonterminals
that can appear in a derivation starting from the start symbol.

Formal definition: The set of sentential forms derivable from G is
the smallest set S(G) C (N U X)* such that

e ScS5(9)
o if aXf € §(G) and X — v € P, then ayf € S(G).

The language associated with grammar is the set of sentential
forms that contain only terminals.

Formal definition: The language associated with G is defined by
L(G) = S(G)nxx

A language L C X * is defined to be context-free if there exists
some CFG G such that L = £(G).

14/23

Context-free grammars: the formal definition

Assorted remarks

e X — a1 | ap | -+ | «p issimply an abbreviation for a
bunch of productions X — a1, X — ap, ..., X — a,.

@ These grammars are called context-free because a rule X — «
says that an X can always be expanded to «, no matter where
the X occurs.

This contrasts with context-sensitive rules, which might allow
us to expand X only in certain contexts, e.g. bXc — bac.

@ Broad intuition: context-free languages allow nesting of
structures to arbitrary depth. E.g. brackets, begin-end blocks,
if-then-else statements, subordinate clauses in English, ...

15/23

Some more examples

Arithmetic expressions again

Our earlier grammar for arithmetic expressions was limited in that
only single-character variables/numerals were allowed. One could
address this problem in either of two ways:
@ Add more grammar rules to allow generation of longer
variables/numerals, e.g.

Num — 0 | NonZeroDigit Digits
Digits — ¢ | Digit Digits
@ Give a separate description of the lexical structure of the
language (e.g. using regular expressions), and treat the names

of lexical classes (e.g. VAR, NUM) as terminals from the point
of view of the CFG. So the CFG will generate strings such as

NUM « (VAR + NUM)

The second option is generally preferable: lexing (using regular

expressions) is computationally ‘cheaper’ than parsing for CFGs.
16 /23

Some more examples

A programming language example

Building on our grammar for arithmetic expressions, we can give a
CFG for a little programming language, e.g.:

stmt — if-stmt | while-stmt | begin-stmt | assg-stmt
if-stmt — if bool-expr then stmt else stmt
while-stmt — while bool-expr do stmt
begin-stmt — begin stmt-list end
stmt-list — stmt | stmt ; stmt-list
assg-stmt — VAR := arith-expr
bool-expr — arith-expr compare-op arith-expr
compare-op — < | > | <= | >=| = | ==
Grammars like this (often with ::= in place of —) are standard in

computer language reference manuals. This notation is often called
BNF (Backus-Naur Form).

17/23

Some more examples

A natural language example

Consider the following lexical classes (‘parts of speech’) in English:

N nouns (alien, cat, dog, house, malt, owl, rat, table)
Name proper names (Jack, Susan)

TrV transitive verbs (admired, ate, built, chased, killed)

LocV locative verbs (is, lives, lay)

Prep prepositions (in, on, by, under)

Det determiners (the, my, some)

Now consider the following productions (start symbol S):

S — NPVP
NP — this | Name | Det N | Det N RelCl
RelCl — that VP | NP TrV
VP — isNP | TrV NP | LocV Prep NP

18/23

Some more examples

Natural language example in action

Even this modest bunch of rules can generate a rich multitude of
English sentences, for example:

this is Jack
some alien ate my owl!
Susan admired the rat that lay under my table

this is the dog that chased the cat that killed the rat that ate
the malt that lay in the house that Jack built

(?7?) the malt the rat the cat the dog chased killed ate lay in
the house that Jack built

(Hard to parse in practice — later we'll see ‘why’.)

19/23

Some more examples

Nesting in natural language

Excerpt from Jane Austen, Mansfield Park.

Whatever effect Sir Thomas's little harangue might really produce on Mr.
Crawford, it raised some awkward sensations in two of the others, two of
his most attentive listeners — Miss Crawford and Fanny. One of whom,
having never before understood that Thornton was so soon and so
completely to be his home, was pondering with downcast eyes on what it
would be not to see Edmund every day; and the other, startled from the
agreeable fancies she had been previously indulging on the strength of her
brother’s description, no longer able, in the picture

of a future Thornton, to shut out the church, sink the clergyman, and see
only the respectable, elegant, modernized and occasional residence of a
man of independent fortune, was considering Sir Thomas, with decided
ill-will, as the destroyer of all this, and suffering the more from . ..

20/23

Some more examples

Every regular language is context-free!

We can easily turn a DFA into a CFG, e.g.

A — ¢| 1A | 0B

1 1
O
—(») B — 1B | 0A

Start symbol: A

@ Terminals are input symbols for the DFA.

@ Non-terminals are states of the DFA.

@ Start symbol is initial state.

@ For every transition X 2, Y, we have a production X — aY.
@ For every accepting state X, we have a production X — €.

A CFG is called regular if all rules are of the form X — aY,
X — Y, X — €. The languages definable by regular CFGs are

precisely the regular languages.
21/23

Some more examples

End-of-lecture self-assessment question

Recall from Slide 11:
List
Tail

—

—

e | Char Tail
e | , Char Tail

Which of the following alternative context-free grammars for List is
incorrect in the sense that it defines a different language for List?

1: List

Body

2: List
NonEmpty

3: List
NonEmpty

—

—

—

—

—

—

4: They are all correct

e | Body Char
€ | Body Char,
€ | NonEmpty

Char | Char , NonEmpty

€ | NonEmpty
Char | NonEmpty , NonEmpty

22/23

Some more examples

Reading and prospectus

Relevant reading:
@ Kozen chapters 19, 20
@ Jurafsky & Martin, sections 12.1-12.3

Next time: What kinds of machines (analogous to DFAs or NFAs)
correspond to context-free languages?

23/23

	Defining languages via grammars: some examples
	Context-free grammars: the formal definition
	Some more examples

