
Pattern matching
Lexing

Pattern matching and lexing
Informatics 2A: Lecture 6

Alex Simpson

School of Informatics
University of Edinburgh
als@inf.ed.ac.uk

27 September, 2013

1 / 19

als@inf.ed.ac.uk

Pattern matching
Lexing

Applications of regular-language machinery
(i.e. of finite automata and regular expressions)

Applications of regular expressions encountered in Inf1-DA:

Specifying the structure of XML documents using DTDs
(Document Type Definitions)

Searching for concordances (and more general forms of
pattern matching) in a corpus (e.g., using CQP).

In this lecture we consider two further applications:

Pattern matching in UNIX/Linux/Mac OS X, using grep

Lexing: the first stage in the formal-language-processing
‘pipeline’ introduced in Lecture 2 (Course Roadmap).

Another application to morphological parsing will be covered in
Lecture 14.

2 / 19

Pattern matching
Lexing

1 Pattern matching
grep and its friends
How they work

2 Lexing
What is lexing?
Lexer generators
How lexers work

3 / 19

Pattern matching
Lexing

grep and its friends
How they work

Pattern matching with Grep tools

Important practical problem: Search a large file (or batch of files)
for strings of a certain form.

Most UNIX/Linux-style systems since the ’70s have provided a
bunch of utilities for this purpose, known as Grep (Global Regular
Expression Print).

Extremely useful and powerful in the hands of a practised user.
Make serious use of the theory of regular languages.

Typical uses:

grep "[0−9]*\.[0−9][0−9]" document.txt

egrep "(^|[^a−zA−Z])[tT]he([^a−zA−Z]|$)" document.txt

−− searches for prices in pounds and pence

−− searches for occurrences of the word "the"

4 / 19

Pattern matching
Lexing

grep and its friends
How they work

grep, egrep, fgrep

There are three related search commands, of increasing generality
and correspondingly decreasing speed:

fgrep searches for one or more fixed strings, using an efficient
string matching algorithm.

grep searches for strings matching a certain pattern (a simple
kind of regular expression).

egrep searches for strings matching an extended pattern
(these give the full power of regular expressions).

For us, the last of these is the most interesting.

5 / 19

Pattern matching
Lexing

grep and its friends
How they work

Syntax of patterns (a selection)

a Single character
[abc] Choice of characters
[A-Z] Any character in ASCII range
[̂ Ss] Any character except those given
. Any single character
,̂ $ Beginning, end of line
* zero or more occurrences of preceding pattern
? optional occurrence of preceding pattern
+ one or more occurrences of preceding pattern
| choice between two patterns (‘union’)

(N.B. The last three of these are specific to egrep.)

This kind of syntax is very widely used. In Perl/Python (including
NLTK), patterns are delimited by /.../ rather than "...".

6 / 19

Pattern matching
Lexing

grep and its friends
How they work

Mathematical versus pattern syntax

Don’t be confused by the mimatch between the mathematical
syntax for regular expressions (as used, e.g., in Kleene algebra) and
the pattern syntax for regular expressions.

The union of two languages is written using + in mathematical
syntax, and | in pattern syntax.

In pattern syntax, + is a unary operation representing one or more
concatenations of strings satisfying the pattern

mathematical pattern

α + β α |β
αα∗ α+

7 / 19

Pattern matching
Lexing

grep and its friends
How they work

Clicker question

Which is the best pattern to match non-negative decimal integers
in a written English document?

1 [0-9]*

2 [0-9]+

3 0 | [1-9][0-9]*

4 0 | [1-9][0-9]?[0-9]?(,[0-9][0-9][0-9])*

8 / 19

Pattern matching
Lexing

grep and its friends
How they work

How egrep (typically) works

egrep will print all lines containing a match for the given pattern.
How can it do this efficiently?

Patterns are clearly regular expressions in disguise.

So we can convert a pattern into a (smallish) NFA.

Choice: do we want to convert to a DFA, or run as an NFA?

DFAs are much faster to execute: only one state to track.
But converting to a DFA itself takes time: only worth it for
long documents.
Also, converting risks blow-up in space requirements.

In practice, implementations simulate the DFA “lazily”, using
the just-in-time simulation discussed at the end of Lecture 4.

grep can be a bit more efficient, exploiting the fact that there’s
‘less non-determinism’ around in the absence of +, ?, |.

9 / 19

Pattern matching
Lexing

grep and its friends
How they work

A curiosity: further closure properties

There are actually other closure properties of regular languages we
haven’t mentioned yet:

If L1 and L2 are regular, so is L1 ∩ L2.
(Proof: given machines N1 and N2, can form their product
N1 × N2 in a fairly obvious way.)

If L is regular, so is its complement Σ∗ − L. (Most easily seen
using DFAs: just swap accepting and non-accepting states!)

So in principle, a language for patterns could include operators for
intersection and complement . . . (Not usually done in practice.)

To ponder: could you show directly that if L is defined by a regular
expression, so is Σ∗ − L?

10 / 19

Pattern matching
Lexing

What is lexing?
Lexer generators
How lexers work

Lexical analysis of formal languages

Another application: lexical analysis (a.k.a. lexing).

The problem: Given a source text in some formal language, split it
up into a stream of lexical tokens (or lexemes), each classified
according to its lexical class.

Example: In Java,

while(count2<=1000)count2+=100

would be lexed as

while (count2 <= 1000)
WHILE LBRACK IDENT INFIX-OP INT-LIT RBRACK

count2 += 100
IDENT ASS-OP INT-LIT

11 / 19

Pattern matching
Lexing

What is lexing?
Lexer generators
How lexers work

Lexing in context

The output of the lexing phase (a stream of tagged lexemes)
serves as the input for the parsing phase.

For parsing purposes, tokens like 100 and 1000 can be
conveniently lumped together in the class of integer literals.
Wherever 100 can legitimately appear in a Java program, so
can 1000.

Keywords of the language (like while) and other special
symbols (like brackets) typically get a lexical class to
themselves.

Another job of the lexing phase is to throw away whitespace
and comments.

Rule of thumb: Lexeme boundaries are the places where a
space could harmlessly be inserted.

12 / 19

Pattern matching
Lexing

What is lexing?
Lexer generators
How lexers work

Lexical tokens and regular languages

In most computer language (e.g. Java), the allowable forms of
identifiers, integer literals, floating point literals, comments etc. are
fairly simple — simple enough to be described by regular
expressions.

This means we can use the technology of finite-state automata to
produce efficient lexers.

Even better, if you’re designing a language, you don’t actually need
to write a lexer yourself!

Just write some regular expressions that define the various lexical
classes, and let the machine automatically generate the code for
your lexer.

This is the idea behind lexer generators, such as the UNIX-based
lex and the more recent Java-based jflex.

13 / 19

Pattern matching
Lexing

What is lexing?
Lexer generators
How lexers work

Sample code (from Jflex user guide)

Identifier = [:jletter:] [:jletterdigit:]*

DecIntegerLiteral = 0 | [1−9][0−9]*

LineTerminator = \r|\n|\r\n

InputCharacter = [^\r\n]

EndOfLineComment = "//" {InputCharacter}* {LineTerminator}

{"=="} { return symbol(sym.ASS_OP); }

{EndOfLineComment} { }

... and later on ...

{"while"} { return symbol(sym.WHILE); }

 {DecIntegerLiteral} { return symbol(sym.INT_LIT); }

 {Identifier} { return symbol(sym.IDENT); }

14 / 19

Pattern matching
Lexing

What is lexing?
Lexer generators
How lexers work

Clicker question

A correct pattern defining jletterdigit is:

[0-9] | [a-z] | [A-Z]

What is wrong with the pattern below?

[0-9] | [A-z]

1 It does not make sense.

2 It matches the symbol ‘[’.

3 It does not match any letter.

4 No idea.

15 / 19

Pattern matching
Lexing

What is lexing?
Lexer generators
How lexers work

Recognizing a lexical token using NFAs

Build NFAs for our lexical classes L1, . . . , Lk in the order
listed: N1, . . . ,Nk .

Run the the ‘parallel’ automaton N1 ∪ · · · ∪ Nk on some input
string x .

Choose the smallest i such that we’re in an accepting state of
Ni . Choose class Li as the lexical class for x with highest
priority.

Perform the specified action for the class Li (typically ‘return
tagged lexeme’, or ignore).

Problem: How do we know when we’ve reached the end of the
current lexical token?

It needn’t be at the first point where we enter an accepting state.
E.g. i, if, if2 and if23 are all valid tokens in Java.

16 / 19

Pattern matching
Lexing

What is lexing?
Lexer generators
How lexers work

Principle of longest match

In most computer languages, the convention is that each stage, the
longest possible lexical token is selected. This is known as the
pronciple of longest match (a.k.a. maximal munch).

To find the longest lexical token starting from a given point, we’d
better run N1 ∪ · · · ∪ Nk until it expires, i.e. the set of possible
states becomes empty. (Or max lexeme length is exceeded. . .)

We’d better also keep a note of the last point at which we were in
an accepting state (and what the top priority lexical class was). So
we need to keep track of three positions in the text:

Start of
lexeme

endpoint
(Class i)

Most recent
current
lexeme

Current
read position

17 / 19

Pattern matching
Lexing

What is lexing?
Lexer generators
How lexers work

Lexing: (conclusion)

Once our NFA has expired, we output the string from ‘start’ to
‘most recent end’ as a lexical token of class i .

We then advance the ‘start’ pointer to the character after the
‘most recent end’. . . and repeat until the end of the file is reached.

All this is the basis for an efficient lexing procedure (further
refinements are of course possible).

In the context of lexing, the same language definition will hopefully
be applicable to hundreds of source files. So in contrast to pattern
searching, well worth taking some time to ‘optimize’ our
automaton (using methods we’ve described).

18 / 19

Pattern matching
Lexing

What is lexing?
Lexer generators
How lexers work

Reading

Relevant reading:

Pattern matching: J & M chapter 2.1 is good. Also online
documentation for grep and the like.

Lexical analysis: see Aho, Sethi and Ullman, Compilers:
Principles, Techniques and Tools, Chapter 3.

Next time: Limitations of regular languages.

19 / 19

	Pattern matching
	grep and its friends
	How they work

	Lexing
	What is lexing?
	Lexer generators
	How lexers work

