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Prelude: Russell’s paradox (1901)

Define R to be the set of all sets that don’t contain themselves:

R = {S | S 6∈ S}

Does R contain itself, i.e. is R ∈ R?

Russell’s analogy: The village barber shaves exactly those men in
the village who don’t shave themselves. Does the barber shave
himself, or not?
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Turing machines: summary

Assuming |Σ| ≥ 2, any kind of ‘finite data’ can (in principle)
be coded up as a string in Σ∗, which can then be written onto
a Turing machine tape. (E.g. natural numbers could be written
in binary, or in decimal if Σ contains the digits 0, . . . , 9.)

According to the Church-Turing thesis, any ‘mechanical
computation’ that can be performed on finite data can be
performed in principle by a Turing machine.

Any decent programming language has the same
‘computational power in principle’ as a Turing machine.
(E.g. Micro-Haskell is Turing complete.)
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Universal Turing machines

Think about Turing machines with input alphabet Σ.

Such a machine T is itself specified by a finite amount of
information, so can in principle be ‘coded up’ by a string T ∈ Σ∗.
(Details don’t matter).

So one can imagine a universal Turing machine U which:

Takes as its input a coded description T of some TM T ,
along with an input string s, separated by a blank symbol.

Simulates the behaviour of T on the input string s.
(N.B. a single step of T may require many steps of U!)

If T ever halts (i.e. enters final state), U will halt.
If T runs forever, U will run forever.

If we believe CTT, such a U must exist — but in any case, it’s
possible to construct one explicitly.
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The concept of a general-purpose computer

Alan Turing’s discovery of the existence of a universal Turing
machine (1936) was in some sense the fundamental insight that
gave us the general-purpose (programmable) computer!

In most areas of life, we have different machines for different jobs.
So isn’t it remarkable that a single physical machine can be
persuaded to perform as many different tasks as a computer can
. . . just by feeding it with a cunning sequence of 0’s and 1’s!

6 / 15



Prelude: Russell’s paradox
Universal Turing machines

The halting problem
Undecidable problems

The halting problem

The universal machine U in effect serves as a recognizer for the set

{T s | T halts on input s}

But is there also a machine V that recognizes the set

{T s | T doesn’t halt on input s} ?

If there were, then given any T and s, we could run U and V in
parallel, and we’d eventually get an answer to the question
“does T halt on input s?”

Conversely, if there were a machine that answered this question,
we could construct a machine V with the above property.

Theorem: There is no such Turing machine V !
So the halting problem is undecidable.
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Proof of undecidability

Why is the halting problem undecidable?

Suppose V existed. Then we could easily make a Turing machine
W that recognized the set

{s ∈ Σ∗ | the TM coded by s runs forever on the input s}

(W could just write two copies of its input string s, separated by a
blank, and thereafter behave as V .)

Now encode W itself as a string w ∈ Σ∗. What does W do when
given the input w?

If W accepts w , that means W runs forever on w !

But if W runs forever on w , then W will accept w !

Contradiction!!! So V can’t exist after all!
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Decidable vs. semidecidable sets

In general, a set S (e.g. ⊆ Σ∗) is called decidable if there’s a
mechanical procedure which, given s ∈ Σ∗, will always return a
yes/no answer to the question “Is s ∈ S?”.
E.g. the set {s | s represents a prime number} is decidable.

We say S is semidecidable if there’s a mechanical procedure which
will return ‘yes’ precisely when s ∈ S (it isn’t obliged to return
anything if s 6∈ S).

Semidecidable sets coincide with recursively enumerable sets, i.e.
those that can be ‘listed’ by a mechanical procedure left to run
forever. Also with recursively enumerable (i.e., Type 0) languages
as defined in lectures 28–9

The halting set {T s | T halts on input s} is an example a
semidecidable set that isn’t decidable. So there exist Type 0
languages for which membership is undecidable.
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Undecidable problems in mathematics

The existence of ‘mechanically unsolvable’ mathematical problems
was in itself a major breakthrough in mathematical logic: until
about 1930, some people (the influential mathematician David
Hilbert, in particular) hoped there might be a single killer
algorithm that could solve ‘all’ mathematical problems!

Once we have one example of an unsolvable problem (the halting
problem), we can use it to obtain others — typically by showing
“the halting problem can be reduced to problem X.”
(If we had a mechanical procedure for solving X, we could use it to
solve the halting problem.)
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Example: Provability of theorems

Let M be some reasonable (consistent) formal logical system for
proving mathematical theorems (something like Peano arithmetic
or Zermelo-Fraenkel set theory).

Theorem: The set of theorems provable in M is semidecidable (and
hence is a Type 0 language), but not decidable.

Proof: Any reasonable system M will be able to prove all true statements

of the form “T halts on input s”. So if we could decide M-provability, we

could solve the halting problem.

Corollary (Gödel): However strong M is, there are mathematical
statements P such that neither P nor ¬P is provable in M.

Proof: Otherwise, given any P we could search through all possible

M-proofs until either a proof of P or of ¬P showed up. This would give

us an algorithm for deciding M-provability.
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Example: Diophantine equations

Suppose we’re given a set of simultaneous equations involving
polynomials in several variables with integer coefficients. E.g.

3xy + 4z + 5wx2 = 27

x2 + y3 − 9z = 4

w5 − z4 = 31

x2 + y2 + z2 + w2 = 2536427

Hilbert’s 10th Problem (1900): Is there a mechanical procedure for
determining whether a set of polynomial equations has an integer
solution?

Matiyasevich’ Theorem (1970): it is undecidable, whether a set of
polynomial equations has an integer solution.

(By contrast, it’s decidable whether there’s a solution in real
numbers!)
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Examples from Language Processing itself

(The snake bites its own tail . . . )

Pretty much all natural problems involving regular languages /
DFAs / NFAs are decidable. E.g. “do two DFAs define the
same language?”: apply the minimization algorithm and see if
they’re isomorphic.

This isn’t true for context-free languages. E.g. it’s even
undecidable, given a context-free grammar G with terminals
Σ, whether or not L(G ) is the whole of Σ∗.

It’s also undecidable, given CFGs G1 and G2, whether
L(G1) ∩ L(G2) is a context-free language.

So undecidability does crop up ‘naturally’ in many areas of
mathematics.
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Clicker questions

What is the status of determining whether L(G ) is nonempty . . .

Q1: . . . when G is a regular grammar?

Q2: . . . when G is a context-free grammar?

Q3: . . . when G is a context-sensitive grammar?

1 Decidable

2 Semidecidable

3 Not even semidecidable

4 Don’t know
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That’s all folks!

That concludes the official course syllabus.

On Thursday, John and I will present a joint revision lecture, in
which we shall discuss:

the exam structure

examinable material

pointers to UG3 (and upwards) Informatics courses that
continue from this one
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